cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 141 results. Next

A351602 a(n) = n^4 * Sum_{d^2|n} 1 / d^4.

Original entry on oeis.org

1, 16, 81, 272, 625, 1296, 2401, 4352, 6642, 10000, 14641, 22032, 28561, 38416, 50625, 69888, 83521, 106272, 130321, 170000, 194481, 234256, 279841, 352512, 391250, 456976, 538002, 653072, 707281, 810000, 923521, 1118208, 1185921, 1336336, 1500625, 1806624, 1874161, 2085136
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), this sequence (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013664.

Programs

  • Mathematica
    f[p_, e_] := p^4*(p^(4*e) - p^(4*Floor[(e - 1)/2]))/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^4*sumdiv(n, d, if (issquare(d), 1/d^2)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^4*(p^(4*e) - p^(4*floor((e-1)/2)))/(p^4 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(6)/5 = Pi^6/4725 = 0.203468... . - Amiram Eldar, Nov 13 2022

A351603 a(n) = n^5 * Sum_{d^2|n} 1 / d^5.

Original entry on oeis.org

1, 32, 243, 1056, 3125, 7776, 16807, 33792, 59292, 100000, 161051, 256608, 371293, 537824, 759375, 1082368, 1419857, 1897344, 2476099, 3300000, 4084101, 5153632, 6436343, 8211456, 9768750, 11881376, 14407956, 17748192, 20511149, 24300000, 28629151, 34635776, 39135393
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), this sequence (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013665.

Programs

  • Mathematica
    f[p_, e_] := p^5*(p^(5*e) - p^(5*Floor[(e - 1)/2]))/(p^5 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^5*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^5))); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^5*(p^(5*e) - p^(5*floor((e-1)/2)))/(p^5 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^6, where c = zeta(7)/6 = 0.168058... . - Amiram Eldar, Nov 13 2022

A351604 a(n) = n^6 * Sum_{d^2|n} 1 / d^6.

Original entry on oeis.org

1, 64, 729, 4160, 15625, 46656, 117649, 266240, 532170, 1000000, 1771561, 3032640, 4826809, 7529536, 11390625, 17043456, 24137569, 34058880, 47045881, 65000000, 85766121, 113379904, 148035889, 194088960, 244156250, 308915776, 387951930, 489419840, 594823321, 729000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), this sequence (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013666.

Programs

  • Mathematica
    f[p_, e_] := p^6*(p^(6*e) - p^(6*Floor[(e - 1)/2]))/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^6*sumdiv(n, d, if (issquare(d), 1/d^3)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^6*(p^(6*e) - p^(6*floor((e-1)/2)))/(p^6 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(8)/7 = Pi^8/66150 = 0.143439... . - Amiram Eldar, Nov 13 2022

A351605 a(n) = n^7 * Sum_{d^2|n} 1 / d^7.

Original entry on oeis.org

1, 128, 2187, 16512, 78125, 279936, 823543, 2113536, 4785156, 10000000, 19487171, 36111744, 62748517, 105413504, 170859375, 270548992, 410338673, 612499968, 893871739, 1290000000, 1801088541, 2494357888, 3404825447, 4622303232, 6103593750, 8031810176, 10465136172
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), this sequence (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013667.

Programs

  • Mathematica
    f[p_, e_] := p^7*(p^(7*e) - p^(7*Floor[(e - 1)/2]))/(p^7 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^7*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^7))); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^7*(p^(7*e) - p^(7*floor((e-1)/2)))/(p^7 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(9)/8 = 0.125251... . - Amiram Eldar, Nov 13 2022

A351606 a(n) = n^8 * Sum_{d^2|n} 1 / d^8.

Original entry on oeis.org

1, 256, 6561, 65792, 390625, 1679616, 5764801, 16842752, 43053282, 100000000, 214358881, 431661312, 815730721, 1475789056, 2562890625, 4311810048, 6975757441, 11021640192, 16983563041, 25700000000, 37822859361, 54875873536, 78310985281, 110505295872, 152588281250
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), this sequence (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013668.

Programs

  • Mathematica
    f[p_, e_] := p^8*(p^(8*e) - p^(8*Floor[(e - 1)/2]))/(p^8 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^8*sumdiv(n, d, if (issquare(d), 1/d^4)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^8*(p^(8*e) - p^(8*floor((e-1)/2)))/(p^8 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(10)/9 = Pi^10/841995 = 0.1112216... . - Amiram Eldar, Nov 13 2022

A351607 a(n) = n^9 * Sum_{d^2|n} 1 / d^9.

Original entry on oeis.org

1, 512, 19683, 262656, 1953125, 10077696, 40353607, 134479872, 387440172, 1000000000, 2357947691, 5169858048, 10604499373, 20661046784, 38443359375, 68853956608, 118587876497, 198369368064, 322687697779, 513000000000, 794280046581, 1207269217792, 1801152661463
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), this sequence (k=9), A351608 (k=10).
Cf. A013669.

Programs

  • Mathematica
    f[p_, e_] := p^9*(p^(9*e) - p^(9*Floor[(e - 1)/2]))/(p^9 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^9*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^9))); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^9*(p^(9*e) - p^(9*floor((e-1)/2)))/(p^9 - 1). - Sebastian Karlsson, Mar 03 2022
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(11)/10 = 0.100049... . - Amiram Eldar, Nov 13 2022

A351608 a(n) = n^10 * Sum_{d^2|n} 1 / d^10.

Original entry on oeis.org

1, 1024, 59049, 1049600, 9765625, 60466176, 282475249, 1074790400, 3486843450, 10000000000, 25937424601, 61977830400, 137858491849, 289254654976, 576650390625, 1100586418176, 2015993900449, 3570527692800, 6131066257801, 10250000000000, 16679880978201
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), this sequence (k=10).
Cf. A013670.

Programs

  • Mathematica
    f[p_, e_] := p^10*(p^(10*e) - p^(10*Floor[(e - 1)/2]))/(p^10 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^10*sumdiv(n, d, if (issquare(d), 1/d^5)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^10*(p^(10*e) - p^(10*floor((e-1)/2)))/(p^10 - 1). - Sebastian Karlsson, Mar 03 2022
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(12)/11 = 691*Pi^12/7023641625 = 0.090931... . - Amiram Eldar, Nov 13 2022

A056626 Number of non-unitary square divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Examples

			n = p^u prime power has u+1 square divisors of which 2 (i.e., 1 and n) are unitary but u-1 are not unitary, so a(p^u) = u - 1. E.g., n = 4^4 = 256, has 5 square divisors {1, 4, 16, 64, 256} of which {4, 16, 64} are not unitary, so a(256)=3.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n])- Times @@ f2 @@@ fct; Array[a, 100] (* Amiram Eldar, Sep 26 2022 *)
  • PARI
    a(n) = {my(f = factor(n), r=0, m = 0); prod(i=1,#f~,f[i,2]>>1 + 1) - 2^(omega(f) - omega(core(f)))} \\ David A. Corneth, Jul 28 2017
    
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)!=1, issquare(d))); \\ Michel Marcus, Jul 29 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A056626(n):
        f = factorint(n).values()
        return prod((e>>1)+1 for e in f)-(1<Chai Wah Wu, Aug 04 2024

Formula

a(n) = A046951(n) - 2^r(n), where r(n) is the number of distinct prime factors of the largest unitary square divisor of n. [Corrected by Amiram Eldar, Aug 03 2024]
a(n) = A046951(n) - 2^(A162641(n)). - David A. Corneth, Jul 28 2017
From Amiram Eldar, Sep 26 2022: (Start)
a(n) = A046951(n) - A056624(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)*(1 - 1/zeta(3)) = 0.27650128922802056073... . (End)

Extensions

a(32) and a(96) corrected by Michael De Vlieger, Jul 29 2017

A140773 Consider the products of all pairs of (not necessarily distinct) positive divisors of n. a(n) is the number of these products that divide n. a(n) also is the number of the products that are divisible by n.

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 2, 6, 4, 5, 2, 10, 2, 5, 5, 9, 2, 10, 2, 10, 5, 5, 2, 16, 4, 5, 6, 10, 2, 14, 2, 12, 5, 5, 5, 20, 2, 5, 5, 16, 2, 14, 2, 10, 10, 5, 2, 24, 4, 10, 5, 10, 2, 16, 5, 16, 5, 5, 2, 28, 2, 5, 10, 16, 5, 14, 2, 10, 5, 14, 2, 32, 2, 5, 10, 10, 5, 14, 2, 24, 9, 5, 2, 28, 5, 5, 5, 16, 2, 28, 5
Offset: 1

Views

Author

Leroy Quet, May 29 2008

Keywords

Comments

Number of 3D grids of n congruent boxes with two different edge lengths, in a box, modulo rotation (cf. A034836 for cubes instead of boxes and A007425 for boxes with three different edge lengths; cf. A000005 for the 2D case). - Manfred Boergens, Feb 25 2021
Number of distinct faces obtainable by arranging n unit cubes into a cuboid. - Chris W. Milson, Mar 14 2021

Examples

			The divisors of 20 are 1,2,4,5,10,20. There are 10 pairs of divisors whose product divides 20: 1*1=1, 1*2=2, 1*4=4, 1*5=5, 1*10=10, 1*20=20, 2*2=4, 2*5=10, 2*10=20, 4*5 = 20. Likewise, there are 10 products that are divisible by 20: 4*5=20, 2*10=20, 4*10=40, 10*10=100, 1*20=20, 2*20=40, 4*20=80, 5*20=100, 10*20=200, 20*20=400. So a(20) = 10.
		

Crossrefs

Cf. A140774.
Cf. A369255 (parity), A369256 (positions of odd terms), A378213 (Dirichlet inverse).

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) f[n_] := Count[ n/Times @@@ Union[Sort /@ Tuples[Divisors@ n, 2]], Integer]; Array[f, 91] (* _Robert G. Wilson v, May 31 2008 *)
    d=Divisors[n]; r=Length[d]; Sum[Ceiling[Length[Divisors[d[[j]]]]/2],{j,r}] (* Manfred Boergens, Feb 25 2021 *)
  • PARI
    \\ Two implementations, after the two different interpretations given by the author of the sequence:
    A140773v1(n) = { my(ds = divisors(n),s=0); for(i=1,#ds,for(j=i,#ds,if(!(n%(ds[i]*ds[j])),s=s+1))); s; }
    A140773v2(n) = { my(ds = divisors(n),s=0); for(i=1,#ds,for(j=i,#ds,if(!((ds[i]*ds[j])%n),s=s+1))); s; }
    \\ Antti Karttunen, May 19 2017
    
  • Python
    # See C. W. Milson link.

Formula

a(n) = Sum_{m|n} A038548(m) = Sum_{m|n} ceiling(d(m)/2), where d(m) = number of divisors of m (A000005). - Manfred Boergens, Feb 25 2021
a(n) = Sum_{d|n} A135539(d,n/d). - Ridouane Oudra, Jul 10 2021
a(n) = (A007425(n) + A046951(n))/2. - Ridouane Oudra, Apr 10 2024
G.f.: Sum_{k>=1} Sum_{d|k} x^(k^2/d)/(1 - x^k). - Miles Wilson, Jun 12 2025

Extensions

Corrected and extended by Robert G. Wilson v, May 31 2008

A293514 a(n) = Product_{d|n, d>1} prime(A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 20, 6, 8, 2, 48, 2, 8, 8, 84, 2, 48, 2, 48, 8, 8, 2, 320, 6, 8, 20, 48, 2, 128, 2, 264, 8, 8, 8, 864, 2, 8, 8, 320, 2, 128, 2, 48, 48, 8, 2, 2688, 6, 48, 8, 48, 2, 320, 8, 320, 8, 8, 2, 3072, 2, 8, 48, 1560, 8, 128, 2, 48, 8, 128, 2, 11520, 2, 8, 48, 48, 8, 128, 2, 2688, 84, 8, 2, 3072, 8, 8, 8, 320
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Examples

			For n = 24, its divisors larger than one are: 2, 3, 4, 6, 8, 12, 24. Only 2 has valuation > 1, namely A286561(24,2) = 3 (as 2^3 divides 24), while the other six have valuation 1. Thus a(24) = prime(1)^6 * prime(3) = 64*5 = 320.
For n = 64, its divisors larger than one are: 2, 4, 8, 16, 32, 64. We see that 2^6 = 4^3 = 8^2 = 64, while valuation of the last three 16, 32 and 64 is 1. Thus a(64) = prime(1)^3 * prime(2) * prime(3) * prime(6) = 2^3 * 3 * 5 * 13 = 1560.
		

Crossrefs

Programs

  • PARI
    A293514(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(valuation(n,d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A286561(n,d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A056595(n) [See A046951.]
1+A056239(a(n)) = A169594(n).
A064989(a(n)) = A293515(n).
Previous Showing 41-50 of 141 results. Next