cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A047379 Numbers that are congruent to {0, 2, 4, 5} mod 7.

Original entry on oeis.org

0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 25, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 95, 96
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = floor(floor((7n + 2)/2)/2).
a(n) = floor((7n-5)/4). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(2+2*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Dec 03 2014: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5), n>5;
a(n) = (14*n-13-(-1)^n+2*i^n*(-1)^((3+(-1)^n)/4))/8, where i = sqrt(-1);
a(n) = A047215(n-1) - A057353(n-1). (End)

A117793 Pentagonal numbers divisible by 5.

Original entry on oeis.org

0, 5, 35, 70, 145, 210, 330, 425, 590, 715, 925, 1080, 1335, 1520, 1820, 2035, 2380, 2625, 3015, 3290, 3725, 4030, 4510, 4845, 5370, 5735, 6305, 6700, 7315, 7740, 8400, 8855, 9560, 10045, 10795, 11310, 12105, 12650, 13490, 14065, 14950, 15555, 16485
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 29 2006

Keywords

Comments

Intersection of A008587 and A000326. Their indices are given by A047215. - Michel Marcus, Feb 27 2014

Crossrefs

Programs

  • Mathematica
    Select[Table[PolygonalNumber[5, n], {n, 0, 100}], Divisible[#, 5] &] (* Amiram Eldar, Mar 22 2021 *)
    Select[PolygonalNumber[5,Range[0,200]],Mod[#,5]==0&] (* Harvey P. Dale, Sep 08 2024 *)
  • PARI
    isok(n) = ispolygonal(n, 5) && !(n % 5); \\ Michel Marcus, Feb 27 2014

Formula

Empirical G.f.: x^2*(5+30*x+25*x^2+15*x^3)/(1-x)^3/(1+x)^2. - Colin Barker, Feb 14 2012
a(2*n+1) = 5*n*(15*n-1)/2, a(2*n+2) = 5*(5*n+2)*(3*n+1)/2. - Robert Israel, Jun 01 2014

A128316 Triangle read by rows: A000012 * A128315 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, -1, 1, 2, 3, -2, 1, 4, -1, 4, -3, 1, 4, 3, -5, 7, -4, 1, 6, -3, 10, -13, 11, -5, 1, 4, 8, -14, 23, -24, 16, -6, 1, 7, -2, 15, -33, 46, -40, 22, -7, 1, 7, 4, -15, 47, -79, 86, -62, 29, -8, 1, 9, -6, 30, -73, 131, -166, 148, -91, 37, -9, 1, 7, 12, -37, 103, -204, 297, -314, 239, -128, 46, -10, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 25 2007

Keywords

Comments

A128316 * [1,2,3...] = A000034: [1,2,1,2,...].

Examples

			First few rows of the triangle:
  1;
  1,  1;
  3, -1,   1;
  2,  3   -2,   1;
  4, -1,   4,  -3,   1;
  4,  3,  -5,   7,  -4,  1;
  6, -3,  10, -13,  11, -5,  1;
  4,  8, -14,  23, -24, 16, -6, 1;
  ...
		

Crossrefs

Sums include: A000027 (row), A032766, A047215, A344817 (alternating sign).

Programs

  • Magma
    A128316:= func< n,k | (&+[(-1)^(j+k)*Floor(n/j)*Binomial(j-1,k-1): j in [k..n]]) >;
    [A128316(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 23 2024
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(j+k)*Floor[n/j]*Binomial[j-1,k-1], {j,k,n}];
    Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 23 2024 *)
  • SageMath
    def A128316(n,k): return sum((-1)^(j+k)*int(n//j)*binomial(j-1,k-1) for j in range(k,n+1))
    flatten([[A128316(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 23 2024

Formula

Sum_{k=1..n} T(n, k) = A000027(n) (row sums).
T(n, 1) = A059851(n).
From G. C. Greubel, Jun 23 2024: (Start)
T(n, k) = A010766(n,k) * AA130595(n-1, k-1) as infinite lower triangular matrices.
T(n, k) = Sum_{j=k..n} (-1)^(j+k) * floor(n/j) * binomial(j-1, k-1).
T(2*n-1, n) = (-1)^(n-1)*A026641(n).
T(2*n-2, n-1) = (-1)^n*A014300(n-1), for n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A344817(n).
Sum_{k=1..n} k*T(n, k) = A032766(n-1).
Sum_{k=1..n} (k+1)*T(n, k) = A047215(n). (End)

Extensions

a(28) = 1 inserted and more terms from Georg Fischer, Jun 06 2023

A075328 Difference between n-th pair in A075325.

Original entry on oeis.org

2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155
Offset: 0

Views

Author

Amarnath Murthy, Sep 18 2002

Keywords

Comments

Empirically the partial sums of A010693 (i.e., 2, 3 repeated). - Sean A. Irvine, Jul 12 2022

Crossrefs

Extensions

More terms from David Wasserman, Jan 16 2005
Previous Showing 31-34 of 34 results.