cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A191738 Dispersion of A047222, (numbers >1 and congruent to 0 or 2 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 12, 10, 9, 8, 20, 17, 15, 11, 13, 33, 28, 25, 18, 14, 22, 55, 47, 42, 30, 23, 16, 37, 92, 78, 70, 50, 38, 27, 19, 62, 153, 130, 117, 83, 63, 45, 32, 21, 103, 255, 217, 195, 138, 105, 75, 53, 35, 24, 172, 425, 362, 325, 230, 175, 125, 88
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....3....5....8
4....7....12...20...33
6....10...17...28...47
9....15...25...42...70
11...18...30...50...83
14...23...38...63...105
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=5; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047222 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191738 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191738  *)

A191739 Dispersion of A008854, (numbers >1 and congruent to 0 or 1 or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 16, 10, 6, 7, 29, 19, 11, 14, 8, 50, 34, 20, 25, 15, 12, 85, 59, 35, 44, 26, 21, 13, 144, 100, 60, 75, 45, 36, 24, 17, 241, 169, 101, 126, 76, 61, 41, 30, 18, 404, 284, 170, 211, 129, 104, 70, 51, 31, 22, 675, 475, 285, 354, 216, 175, 119
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....4....9....16...29
2....5....10...19...34
3....6....11...20...35
7....14...25...44...75
8....15...26...45...76
12...21...36...61...104
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=4; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A008854 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191739 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191739  *)

A191740 Dispersion of A047220, (numbers >1 and congruent to 0 or 1 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 11, 10, 8, 7, 20, 18, 15, 13, 9, 35, 31, 26, 23, 16, 12, 60, 53, 45, 40, 28, 21, 14, 101, 90, 76, 68, 48, 36, 25, 17, 170, 151, 128, 115, 81, 61, 43, 30, 19, 285, 253, 215, 193, 136, 103, 73, 51, 33, 22, 476, 423, 360, 323, 228, 173, 123
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....3....6....11...20
2....5....10...18...31
4....8....15...26...45
7....13...23...40...68
9....16...28...48...81
12...21...36...61...103
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047220 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
      (* A191740 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191740  *)

A191741 Dispersion of A047217, (numbers >1 and congruent to 0 or 1 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 10, 11, 7, 8, 17, 20, 12, 15, 9, 30, 35, 21, 26, 16, 13, 51, 60, 36, 45, 27, 22, 14, 86, 101, 61, 76, 46, 37, 25, 18, 145, 170, 102, 127, 77, 62, 42, 31, 19, 242, 285, 171, 212, 130, 105, 71, 52, 32, 23, 405, 476, 286, 355, 217, 176, 120
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....5....10...17
3....6....11...20...35
4....7....12...21...36
8....15...26...45...76
9....16...27...46...77
13...22...37...62...105
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047217 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191741 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191741  *)

A198442 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,0).

Original entry on oeis.org

0, 0, 2, 3, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812
Offset: 1

Views

Author

Paul Weisenhorn, Oct 25 2011

Keywords

Comments

If the sequence ends with (1,1,0) Abel wins; if it ends with (1,0,0) Kain wins.
Abel(n) = A002620(n-1) = (2*n*(n - 2) + 1 - (-1)^n)/8.
Kain(n) = A004526(n-1) = floor((n - 1)/2).
Win probability for Abel = sum(Abel(n)/2^n) = 2/3.
Win probability for Kain = sum(Kain(n)/2^n) = 1/3.
Mean length of the game = sum(n*a(n)/2^n) = 16/3.
Essentially the same as A035106. - R. J. Mathar, Oct 27 2011
The sequence 2*a(n) is denoted as chi(n) by McKee (1994) and is the degree of the division polynomial f_n as a polynomial in x. He notes that "If x is given weight 1, a is given weight 2, and b is given weight 3, then all the terms in f_n(a, b, x) have weight chi(n)". - Michael Somos, Jan 09 2015
In Duistermaat (2010), at the end of section 11.2 The Elliptic Billiard, on page 492 the number of k-periodic fibers counted with multiplicities of the QRT root is given by equation (11.2.8) as "1/4 k^2 + 3{k/2}(1 - {k/2}) - 1 = n^2 - 1 when k = 2n, n^2 + n when k = 2n+1, for every integer k." - Michael Somos, Mar 14 2023

Examples

			For n = 6 the a(6) = 8 solutions are (0,0,0,1,1,0), (0,1,0,1,1,0),(0,0,1,1,1,0), (1,0,1,1,1,0), (0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and
  (0,0,0,1,0,0), (0,1,0,1,0,0) for Kain.
G.f. = 2*x^3 + 3*x^4 + 6*x^5 + 8*x^6 + 12*x^7 + 15*x^8 + 20*x^9 + ...
		

References

  • J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
  • A. Engel, Wahrscheinlichkeitsrechnung und Statistik, Band 2, Klett, 1978, pages 25-26.

Crossrefs

Programs

  • Magma
    [(2*n^2-5-3*(-1)^n)/8: n in [1..60]]; // Vincenzo Librandi, Oct 28 2011
    
  • Maple
    for n from 1 by 2 to 99 do
      a(n):=(n^2-1)/4:
      a(n+1):=(n+1)^2/4-1:
    end do:
    seq(a(n),n=1..100);
  • Mathematica
    a[ n_] := Quotient[ n^2 - 1, 4]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    a(n)=([1,1,0,0,0,0;0,0,1,1,0,0;0,1,0,0,1,0;0,0,0,1,1,0;0,0,0,0,0,2;0,0,0,0,0,2]^n)[1,5] \\ Charles R Greathouse IV, Oct 26 2011
    
  • PARI
    {a(n) = (n^2 - 1) \ 4}; /* Michael Somos, Jan 09 2015 */
    
  • Perl
    sub a {
        my ($t, $n) = (0, shift);
        for (0..((1<<$n)-1)) {
            my $str = substr unpack("B32", pack("N", $_)), -$n;
            $t++ if ($str =~ /1.0$/ and not $str =~ /1.0./);
        }
        return $t
    } # Charles R Greathouse IV, Oct 26 2011
    
  • Sage
    def A198442():
        yield 0
        x, y = 0, 2
        while True:
           yield x
           x, y = x + y, x//y + 1
    a = A198442(); print([next(a) for i in range(57)]) # Peter Luschny, Dec 22 2015

Formula

a(n) = (2*n^2 - 5 - 3*(-1)^n)/8.
a(2*n) = n^2 - 1; a(2*n+1) = n*(n + 1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) with n>=4.
G.f.: x^3*(2 - x)/((1 + x)*(1 - x)^3). - R. J. Mathar, Oct 27 2011
a(n) = a(-n) for all n in Z. a(0) = -1. - Michael Somos, Jan 09 2015
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-1 - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 09 2015
1 = a(n) - a(n+1) - a(n+2) + a(n+3), 2 = a(n) - 2*a(n+2) + a(n+4) for all n in Z. - Michael Somos, Jan 09 2015
a(n) = A002620(n+2) - A052928(n+2) for n >= 1. (Note A265611(n) = A002620(n+1) + A052928(n+1) for n >= 1.) - Peter Luschny, Dec 22 2015
a(n+1) = A110654(n)^2 + A110654(n)*(2 - (n mod 2)), n >= 0. - Fred Daniel Kline, Jun 08 2016
a(n) = A004526(n)*A004526(n+3). - Fred Daniel Kline, Aug 04 2016
a(n) = floor((n^2 - 1)/4). - Bruno Berselli, Mar 15 2021

Extensions

a(12) inserted by Charles R Greathouse IV, Oct 26 2011

A219607 Number of partitions of n into distinct parts 5*k+2 or 5*k+3.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 1, 3, 1, 3, 3, 2, 5, 3, 5, 5, 4, 7, 4, 7, 7, 6, 11, 7, 11, 11, 9, 15, 10, 15, 16, 14, 22, 16, 23, 23, 20, 30, 22, 31, 32, 29, 42, 33, 44, 45, 41, 56, 45, 59, 61, 57, 78, 64, 82, 84, 78, 103, 86, 108, 112, 107, 138
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2012

Keywords

Comments

Convolution of A281271 and A281272. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(10) = #{8+2, 7+3} = 2;
a(11) = #{8+3} = 1;
a(12) = #{12, 7+3+2} = 2;
a(13) = #{13, 8+3+2} = 2;
a(14) = #{12+2} = 1;
a(15) = #{13+2, 12+3, 8+7} = 3;
a(16) = #{13+3} = 1;
a(17) = #{17, 12+3+2, 8+7+2} = 3;
a(18) = #{18, 13+3+2, 8+7+3} = 3;
a(19) = #{17+2, 12+7} = 2;
a(20) = #{18+2, 17+3, 13+7, 12+8, 8+7+3+2} = 5.
		

Crossrefs

Programs

  • Haskell
    a219607 = p a047221_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(5*k - 2))*(1 + x^(5*k - 3)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

a(n) ~ exp(sqrt(2*n/15)*Pi) / (2*30^(1/4)*n^(3/4)) * (1 - (3*sqrt(15/2)/(8*Pi) + 11*Pi/(60*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017

A272914 Sixth powers ending in digit 6.

Original entry on oeis.org

4096, 46656, 7529536, 16777216, 191102976, 308915776, 1544804416, 2176782336, 7256313856, 9474296896, 24794911296, 30840979456, 68719476736, 82653950016, 164206490176, 192699928576, 351298031616, 404567235136, 689869781056, 782757789696, 1265319018496, 1418519112256, 2194972623936
Offset: 1

Views

Author

Bruno Berselli, May 24 2016

Keywords

Comments

Other sequences of k-th powers ending in digit k are: A017281 (k=1), A017355 (k=3), A017333 (k=5), A017311 (k=7), A017385 (k=9). It is missing k=4 because the fourth powers end with 0, 1, 5 or 6.
Union of A017322 and A017346.
a(h)^(1/6) is a member of A068408 for h = 2, 4, 8, 12, 16, 20, 36, 76, ...

Crossrefs

Similar sequences (see comment): A017281, A017311, A017333, A017355, A017385.

Programs

  • Magma
    /* By definition: */ k:=6; [n^k: n in [0..200] | Modexp(n, k, 10) eq k];
    
  • Magma
    [(10*n-3*(-1)^n-5)^6/64: n in [1..30]];
    
  • Mathematica
    Table[(10 n - 3 (-1)^n - 5)^6/64, {n, 1, 30}]
  • Maxima
    makelist((10*n-3*(-1)^n-5)^6/64, n, 1, 30);
  • PARI
    vector(30, n, nn; (10*n-3*(-1)^n-5)^6/64)
    
  • Sage
    [(10*n-3*(-1)^n-5)^6/64 for n in (1..30)]
    

Formula

O.g.f.: 64*x*(64 + 665*x + 116536*x^2 + 140505*x^3 + 2023280*x^4 + 983830*x^5 + 4720240*x^6 + 983830*x^7 + 2023280*x^8 + 140505*x^9 + 116536*x^10 + 665*x^11 + 64*x^12)/((1 + x)^6*(1 - x)^7).
E.g.f.: (-8192 + 45*(91 + 182*x - 5250*x^2 + 16000*x^3 - 9375*x^4 + 1250*x^5)*exp(-x) + (4097 + 287000*x^2 + 1262500*x^3 + 1253125*x^4 + 375000*x^5 + 31250*x^6)*exp(x))/2.
a(n) = (10*n - 3*(-1)^n - 5)^6/64 = 64*A047221(n)^6.

A090773 Numbers that are congruent to {4, 6} mod 10.

Original entry on oeis.org

4, 6, 14, 16, 24, 26, 34, 36, 44, 46, 54, 56, 64, 66, 74, 76, 84, 86, 94, 96, 104, 106, 114, 116, 124, 126, 134, 136, 144, 146, 154, 156, 164, 166, 174, 176, 184, 186, 194, 196, 204, 206, 214, 216, 224, 226, 234, 236, 244, 246, 254, 256, 264, 266, 274, 276, 284
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Crossrefs

Programs

  • Mathematica
    #+{4,6}&/@(10Range[0,50])//Flatten (* or *) LinearRecurrence[{1,1,-1},{4,6,14},100] (* Harvey P. Dale, Jun 05 2017 *)

Formula

a(n) = 2 * A047221(n) = 5*n-5/2-3*(-1)^n/2.
a(n) = 10*n-a(n-1)-10 (with a(1)=4). - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(2+x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/10. - Amiram Eldar, Dec 28 2021
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(2*Pi/5) (A179290).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/5)/2 (A300074). (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A155086 Numbers k such that k^2 == -1 (mod 13).

Original entry on oeis.org

5, 8, 18, 21, 31, 34, 44, 47, 57, 60, 70, 73, 83, 86, 96, 99, 109, 112, 122, 125, 135, 138, 148, 151, 161, 164, 174, 177, 187, 190, 200, 203, 213, 216, 226, 229, 239, 242, 252, 255, 265, 268, 278, 281, 291, 294, 304, 307, 317, 320, 330, 333, 343, 346, 356, 359
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Numbers k such that k == 5 or 8 mod 13. - Charles R Greathouse IV, Dec 28 2011

Crossrefs

Cf. A002144, A047221 (m=5), A155095 (m=17), A156619 (m=25), A155096 (m=29), A155097 (m=37), A155098 (m=41), A154609 (bisection).

Programs

  • Magma
    I:=[5, 8, 18]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {5, 8, 18}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Select[Range[1000], PowerMod[#, 2, 13] == 12 &] (* Vincenzo Librandi, Apr 24 2014 *)

Formula

a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(5+3*x+5*x^2)/((1+x)*(x-1)^2) .
a(n) = 13*(n-1/2)/2 -7*(-1)^n/4.
a(n) = a(n-2)+13. - M. F. Hasler, Jun 16 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/26)*Pi/13. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/26)*sec(3*Pi/26) = 1/(2*cos(Pi/13)-1).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(5*Pi/26)/2. (End)

Extensions

Algebra simplified by R. J. Mathar, Aug 18 2009
Edited by N. J. A. Sloane, Jun 23 2010

A155107 Numbers that are 23 or 30 (mod 53).

Original entry on oeis.org

23, 30, 76, 83, 129, 136, 182, 189, 235, 242, 288, 295, 341, 348, 394, 401, 447, 454, 500, 507, 553, 560, 606, 613, 659, 666, 712, 719, 765, 772, 818, 825, 871, 878, 924, 931, 977, 984, 1030, 1037, 1083, 1090, 1136, 1143, 1189, 1196, 1242, 1249, 1295
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Also, numbers k such that k^2 == -1 (mod 53).
The first pair (a,b) is such that a+b=p=53, a*b=p*h+1, with h<=(p-1)/4; subsequent pairs are given as (a+kp, b+kp), k=1,2,3...

Crossrefs

Cf. numbers n such that n^2 == -1 (mod p), where p is a prime of the form 4k+1: A047221 (p=5), A155086 (p=13), A155095 (p=17), A155096 (p=29), A155097 (p=37), A155098 (p=41), this sequence (p=53), A241406 (p=61), A241407 (p=73), A241520 (p=89), A241521 (p=97).

Programs

  • Magma
    I:=[23,30,76]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, Apr 24 2014
    
  • Magma
    [-23*(-1)^n+53*Floor(n/2): n in [1..50]]; // Vincenzo Librandi, Apr 24 2014
  • Mathematica
    Select[Range[1300], PowerMod[#, 2, 53] == 52 &] (* or *) LinearRecurrence[ {1, 1, -1}, {23, 30, 76}, 50] (* Harvey P. Dale, Nov 30 2011 *)
    CoefficientList[Series[(23 + 7 x + 23 x^2)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 24 2014 *)
  • PARI
    A155107(n)=n\2*53-23*(-1)^n /* M. F. Hasler, Jun 16 2010 */
    

Formula

a(n) = 23*(-1)^(n+1) + 53*floor(n/2). - M. F. Hasler, Jun 16 2010
a(2k+1) = 53 k + a(1), a(2k) = 53 k - a(1), with a(1) = 23 = A002314(7) since 53 = A002144(7). - M. F. Hasler, Jun 16 2010
a(n) = a(n-2) + 53 for all n > 2. - M. F. Hasler, Jun 16 2010
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = 53*n/2 - 53/4 - 39*(-1)^n/4.
G.f.: x*(23 + 7*x + 23*x^2)/((1+x)*(1-x)^2). (End)

Extensions

Terms checked & minor edits by M. F. Hasler, Jun 16 2010
Previous Showing 21-30 of 36 results. Next