A296419
Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.
Original entry on oeis.org
1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1
The triangle starts in row 1 as
1;
1, 4;
1, 10, 50;
1, 20, 175, 980;
1, 35, 490, 4116, 24696;
1, 56, 1176, 14112, 116424, 731808;
1, 84, 2520, 41580, 457380, 3737448, 24293412;
1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
-
A296419 := proc(i,j)
2*(i+j-2)!*(i+j-1)!*(i+j)!/(i-1)!/i!/(i+1)!/(j-1)!/j!/(j+1)! ;
end proc:
seq(seq(A296419(i,j),j=1..i),i=1..10) ;
A338217
Triangle read by rows: T(n,k) is the coefficient of (1+x)^k in the ZZ polynomial of the hexagonal graphene flake O(3,3,n).
Original entry on oeis.org
1, 9, 9, 1, 1, 18, 63, 68, 23, 2, 1, 27, 162, 350, 310, 114, 15, 1, 1, 36, 306, 996, 1446, 984, 303, 42, 2, 1, 45, 495, 2155, 4360, 4360, 2141, 505, 49, 1, 1, 54, 729, 3976, 10325, 13650, 9233, 3124, 468, 20, 1, 63, 1008, 6608, 20958, 34482, 29750, 13170, 2685, 175, 1, 72, 1332, 10200, 38220, 75264, 79002, 43284, 11190, 980
Offset: 1
Triangle begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
n=1: 1 9 9 1
n=2: 1 18 63 68 23 2
n=3: 1 27 162 350 310 114 15 1
n=4: 1 36 306 996 1446 984 303 42 2
n=5: 1 45 495 2155 4360 4360 2141 505 49 1
n=6: 1 54 729 3976 10325 13650 9233 3124 468 20
n=7: 1 63 1008 6608 20958 34482 29750 13170 2685 175
n=8: 1 72 1332 10200 38220 75264 79002 43284 11190 980
...
Row n=4 corresponds to the polynomial 1 + 36*(1+x) + 306*(1+x)^2 + 996*(1+x)^3 + 1446*(1+x)^4 + 984*(1+x)^5 + 303*(1+x)^6 + 42*(1+x)^7 + 2*(1+x)^8.
- C.-P. Chou, ZZDecomposer executable.
- C.-P. Chou, ZZCalculator source code.
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH Commun. Math. Comput. Chem. 68 (2012), 3-30.
- C.-P. Chou, Y. Li and H. A. Witek, Zhang-Zhang Polynomials of Various Classes of Benzenoid Systems, MATCH Commun. Math. Comput. Chem. 68 (2012), 31-64.
- C.-P. Chou and H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 741-764.
- C.-P. Chou and H. A. Witek, Determination of Zhang-Zhang Polynomials for various Classes of Benzenoid Systems: Non-Heuristic Approach, MATCH Commun. Math. Comput. Chem. 72 (2014), 75-104.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 105 for a graphical definition of O(3,3,n)).
- H. A. Witek, J. Langner, G. Mos, and C.-P. Chou, Zhang-Zhang Polynomials of Regular 5-tier Benzeonid Strips, MATCH Commun. Math. Comput. Chem. 78 (2017), 487-504.
- H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems III, Discrete Math. 212 (2000), 261-269 (proper sextet is defined in Fig.1 and ZZ polynomial in the basis of (1+x)^k monomials is defined by Theorem 2).
Row sums give column k=0 of
A338158.
Another representation is given by
A338158.
-
(n,k)->binomial(9,k)*binomial(n,k)+(10*binomial(7,k-2)-binomial(6,k-2))*binomial(n+1,k)+(20*binomial(5,k-4)+binomial(3,k-3)-binomial(3,k-5))*binomial(n+2,k)+(10*binomial(3,k-6)+binomial(2,k-5)+binomial(3,k-5))*binomial(n+3,k)+binomial(2,k-7)*binomial(n+4,k)
A057658
a(n) = n*(n+1)^2*(n+2)^3*(n+3)^2*(n+4).
Original entry on oeis.org
0, 8640, 172800, 1512000, 8467200, 35562240, 121927680, 359251200, 940896000, 2242468800, 4947022080, 10231341120, 20033395200, 37425024000, 67118284800, 116138603520, 194702952960, 317346724800, 504348768000, 783510235200
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45, 10,-1).
-
[n*(n+1)^2*(n+2)^3*(n+3)^2*(n+4): n in [0..25]]; // Vincenzo Librandi, Jun 07 2019
-
seq(n*(n+1)^2*(n+2)^3*(n+3)^2*(n+4), n=0..30); # Robert Israel, Jun 06 2019
-
Table[n (n+1)^2 (n+2)^3 (n+3)^2 (n+4), {n, 0, 40}] (* Vincenzo Librandi, Jun 07 2019 *)
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,8640,172800,1512000,8467200,35562240,121927680,359251200,940896000,2242468800},30] (* Harvey P. Dale, Sep 24 2021 *)
A133815
Square array of Hankel transforms of binomial(n+k,floor((n+k)/2)), read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, -1, 2, 1, 1, -1, 3, 3, 1, 1, 1, 4, -6, 6, 1, 1, 1, 5, -10, 20, 10, 1, 1, -1, 6, 15, 50, -50, 20, 1, 1, -1, 7, 21, 105, -175, 175, 35, 1, 1, 1, 8, -28, 196, 490, 980, -490, 70, 1, 1, 1, 9, -36, 336, 1176, 4116, -4116, 1764, 126, 1
Offset: 0
Array begins
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 6, 10, ...
1, -1, 3, -6, 20, -50, ...
1, -1, 4, -10, 50, -175, ...
1, 1, 5, 15, 105, 490, ...
1, 1, 6, 21, 196, 1176, ...
As a number triangle, T(n-k,k) gives
1;
1, 1;
1, 1, 1;
1, -1, 2, 1;
1, -1, 3, 3, 1;
1, 1, 4, -6, 6, 1;
1, 1, 5, -10, 20, 10, 1;
1, -1, 6, 15, 50, -50, 20, 1;
-
F:= Floor;
function t(n,k)
if k eq 0 then return 1;
elif k eq 1 then return (-1)^F(n/2);
elif (k mod 2) eq 0 then return (&*[ Binomial(n+F(k/2)+j, F(k/2))/Binomial(F(k/2)+j, F(k/2)) : j in [0..F((k-2)/2)] ]);
else return (-1)^F(n/2)*(&*[ Binomial(n+F((k+1)/2)+j, F((k+1)/2))/Binomial(F((k+1)/2)+j, F((k+1)/2)) : j in [0..F((k-3)/2)] ]);
end if;
end function;
// [[t(n,k): k in [0..10]]: n in [0..10]];
A133815:= func< n,k | t(n-k, k) >;
[A133815(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 16 2023
-
T[ n_, m_] := With[{k = Quotient[m + 1, 2]}, (-1)^(Quotient[n, 2] m) Product[ Binomial[n + k + j, k] / Binomial[k + j, k], {j, 0, k - 1 - Mod[m, 2]}]];
(* Michael Somos, Apr 03 2021 *)
-
alias(C, binomial);
T(n,k) = if (k % 2 == 0, prod(j=0, (k-2)/2, C(n+k/2+j,k/2)/C(k/2+j,k/2)), (cos(Pi*n/2)+sin(Pi*n/2))*prod(j=0, (k-3)/2, C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)));
tabl(nn) = matrix(nn, nn, n, k, round(T(n-1, k-1))); \\ Michel Marcus, Dec 10 2016
-
T(n, m) = my(k = (m+1)\2); (-1)^(n\2*m) * prod(j=0, k-1-m%2, binomial(n+k+j, k) / binomial(k+j, k)); /* Michael Somos, Apr 03 2021 */
-
def f(k): return (k+1)//2
def t(n, k): return (-1)^(k*(n//2))*product(binomial(n+f(k) +j, f(k))/binomial(f(k) +j, f(k)) for j in range(f(k-1)))
def A133815(n,k): return t(n-k, k)
flatten([[A133815(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 16 2023
A338158
Triangle read by rows: T(n,k) is the coefficient of x^k in the ZZ polynomial of the hexagonal graphene flake O(3,3,n).
Original entry on oeis.org
20, 30, 12, 1, 175, 450, 425, 180, 33, 2, 980, 3308, 4458, 3065, 1140, 225, 22, 1, 4116, 16468, 27293, 24262, 12521, 3796, 653, 58, 2, 14112, 63522, 120848, 126518, 79506, 30681, 7132, 933, 58, 1, 41580, 204180, 429030, 503664, 361690, 163380, 45885, 7588, 648, 20
Offset: 1
Triangle begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
n=1: 20 30 12 1
n=2: 175 450 425 180 33 2
n=3: 980 3308 4458 3065 1140 225 22 1
n=4: 4116 16468 27293 24262 12521 3796 653 58 2
n=5: 14112 63522 120848 126518 79506 30681 7132 933 58 1
n=6: 41580 204180 429030 503664 361690 163380 45885 7588 648 20
...
Row n=4 corresponds to the polynomial 4116 + 16468*x + 27293*x^2 + 24262*x^3 + 12521*x^4 + 3796*x^5 + 653*x^6 + 58*x^7 + 2*x^8.
- C.-P. Chou, ZZDecomposer.
- C.-P. Chou, Y. Li and H. A. Witek, Zhang-Zhang Polynomials of Various Classes of Benzenoid Systems, MATCH Commun. Math. Comput. Chem. 68 (2012), 31-64.
- C.-P. Chou and H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 741-764.
- C.-P. Chou and H. A. Witek, Determination of Zhang-Zhang Polynomials for various Classes of Benzenoid Systems: Non-Heuristic Approach, MATCH Commun. Math. Comput. Chem. 72 (2014), 75-104.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 105 for a graphical definition of O(3,3,n)).
- H. A. Witek, J. Langner, G. Mos, and C.-P. Chou, Zhang-Zhang Polynomials of Regular 5-tier Benzeonid Strips, MATCH Commun. Math. Comput. Chem. 78 (2017), 487-504.
- H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996), 147-167 (ZZ polynomial is defined by Eq.(2.1) and working formula is given by Eq.(2.2)).
Other representation of ZZ polynomials of O(3,3,n) is given by
A338217.
-
(n,k)->add(binomial(i+k,k)*(binomial(9,i+k)*binomial(n,i+k)+(10*binomial(7,i+k-2)-binomial(6,i+k-2))*binomial(n+1,i+k)+(20*binomial(5,i+k-4)+binomial(3,i+k-3)-binomial(3,i+k-5))*binomial(n+2,i+k)+(10*binomial(3,i+k-6)+binomial(2,i+k-5)+binomial(3,i+k-5))*binomial(n+3,i+k)+binomial(2,i+k-7)*binomial(n+4,i+k)),i = 0..9)
Comments