cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A296419 Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.

Original entry on oeis.org

1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1

Views

Author

R. J. Mathar, Feb 25 2018

Keywords

Examples

			The triangle starts in row 1 as
  1;
  1,   4;
  1,  10,   50;
  1,  20,  175,    980;
  1,  35,  490,   4116,   24696;
  1,  56, 1176,  14112,  116424,   731808;
  1,  84, 2520,  41580,  457380,  3737448,  24293412;
  1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
		

Crossrefs

Cf. rows/columns: A006542, A047819, A107915, A140901, A140903, A140907.

Programs

  • Maple
    A296419 := proc(i,j)
        2*(i+j-2)!*(i+j-1)!*(i+j)!/(i-1)!/i!/(i+1)!/(j-1)!/j!/(j+1)! ;
    end proc:
    seq(seq(A296419(i,j),j=1..i),i=1..10) ;

Formula

T(i,j) = T(j,i) = 2*(i+j-2)!*(i+j-1)!*(i+j)!/((i-1)!*i!*(i+1)!*(j-1)!*j!*(j+1)!).

A338217 Triangle read by rows: T(n,k) is the coefficient of (1+x)^k in the ZZ polynomial of the hexagonal graphene flake O(3,3,n).

Original entry on oeis.org

1, 9, 9, 1, 1, 18, 63, 68, 23, 2, 1, 27, 162, 350, 310, 114, 15, 1, 1, 36, 306, 996, 1446, 984, 303, 42, 2, 1, 45, 495, 2155, 4360, 4360, 2141, 505, 49, 1, 1, 54, 729, 3976, 10325, 13650, 9233, 3124, 468, 20, 1, 63, 1008, 6608, 20958, 34482, 29750, 13170, 2685, 175, 1, 72, 1332, 10200, 38220, 75264, 79002, 43284, 11190, 980
Offset: 1

Views

Author

Henryk A. Witek, Oct 17 2020

Keywords

Comments

The maximum k for which T(n,k) is nonzero, denoted by Cl(n), is usually referred to as the Clar number of O(3,3,n); one has: Cl(1)=3, Cl(2)=5, Cl(3)=7, Cl(4)=8, and Cl(n)=9 for n>4.
T(n,k) denotes the number of perfect matchings (i.e., Kekulé structures) with k proper sextets for the hexagonal graphene flake O(3,3,n).
ZZ polynomials of hexagonal graphene flakes O(3,3,n) with any n can be obtained from Eq.(13) of Witek, Langner, Mos and Chou.
ZZ polynomials of hexagonal graphene flakes O(3,3,n) can be computed using ZZDecomposer (see link below), a graphical program to compute ZZ polynomials of benzenoids, or using ZZCalculator (see link below).

Examples

			Triangle begins:
    k=0 k=1   k=2    k=3    k=4    k=5    k=6    k=7    k=8  k=9
n=1:  1   9     9      1
n=2:  1  18    63     68     23      2
n=3:  1  27   162    350    310    114     15      1
n=4:  1  36   306    996   1446    984    303     42      2
n=5:  1  45   495   2155   4360   4360   2141    505     49    1
n=6:  1  54   729   3976  10325  13650   9233   3124    468   20
n=7:  1  63  1008   6608  20958  34482  29750  13170   2685  175
n=8:  1  72  1332  10200  38220  75264  79002  43284  11190  980
   ...
Row n=4 corresponds to the polynomial 1 + 36*(1+x) + 306*(1+x)^2 + 996*(1+x)^3 + 1446*(1+x)^4 + 984*(1+x)^5 + 303*(1+x)^6 + 42*(1+x)^7 + 2*(1+x)^8.
		

Crossrefs

Column k=0 is A000012.
Column k=1 is A008591.
Column k=2 is 9*A000566.
Row sums give A047819.
Row sums give column k=0 of A338158.
Another representation is given by A338158.

Programs

  • Maple
    (n,k)->binomial(9,k)*binomial(n,k)+(10*binomial(7,k-2)-binomial(6,k-2))*binomial(n+1,k)+(20*binomial(5,k-4)+binomial(3,k-3)-binomial(3,k-5))*binomial(n+2,k)+(10*binomial(3,k-6)+binomial(2,k-5)+binomial(3,k-5))*binomial(n+3,k)+binomial(2,k-7)*binomial(n+4,k)

Formula

T(n,k) = binomial(9,k)*binomial(n,k) + (10*binomial(7,k-2) - binomial(6,k-2))*binomial(n+1,k) + (20*binomial(5,k-4) + binomial(3,k-3) - binomial(3,k-5))*binomial(n+2,k) + (10*binomial(3,k-6) + binomial(2,k-5) + binomial(3,k-5))*binomial(n+3,k) + binomial(2,k-7)*binomial(n+4,k).

A057658 a(n) = n*(n+1)^2*(n+2)^3*(n+3)^2*(n+4).

Original entry on oeis.org

0, 8640, 172800, 1512000, 8467200, 35562240, 121927680, 359251200, 940896000, 2242468800, 4947022080, 10231341120, 20033395200, 37425024000, 67118284800, 116138603520, 194702952960, 317346724800, 504348768000, 783510235200
Offset: 0

Views

Author

N. J. A. Sloane, Oct 16 2000

Keywords

Crossrefs

Cf. A047819.

Programs

  • Magma
    [n*(n+1)^2*(n+2)^3*(n+3)^2*(n+4): n in [0..25]]; // Vincenzo Librandi, Jun 07 2019
  • Maple
    seq(n*(n+1)^2*(n+2)^3*(n+3)^2*(n+4), n=0..30); # Robert Israel, Jun 06 2019
  • Mathematica
    Table[n (n+1)^2 (n+2)^3 (n+3)^2 (n+4), {n, 0, 40}] (* Vincenzo Librandi, Jun 07 2019 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,8640,172800,1512000,8467200,35562240,121927680,359251200,940896000,2242468800},30] (* Harvey P. Dale, Sep 24 2021 *)

Formula

From Robert Israel, Jun 06 2019: (Start)
G.f.: 8640*x*(x^4 + 10*x^3 + 20*x^2 + 10*x + 1)/(x - 1)^10.
(n + 3)*(n + 2)*a(n - 2) - 2*(n^2 + 2*n + 12)*a(n - 1) + n*(n - 1)*a(n) = 0. (End)
a(n) = 8640*A047819(n) for n > 0. - Michel Marcus, Jun 07 2019

A133815 Square array of Hankel transforms of binomial(n+k,floor((n+k)/2)), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, -1, 2, 1, 1, -1, 3, 3, 1, 1, 1, 4, -6, 6, 1, 1, 1, 5, -10, 20, 10, 1, 1, -1, 6, 15, 50, -50, 20, 1, 1, -1, 7, 21, 105, -175, 175, 35, 1, 1, 1, 8, -28, 196, 490, 980, -490, 70, 1, 1, 1, 9, -36, 336, 1176, 4116, -4116, 1764, 126, 1
Offset: 0

Views

Author

Paul Barry, Sep 24 2007

Keywords

Comments

T(n+1,k) is the Hankel transform of binomial(n+k, floor((n+k)/2)).
Even-indexed columns count tilings of hexagons: A002415 (<2,n,2>), A047819 (<3,n,3>), A047835 (<4,n,4>), etc.

Examples

			Array begins
  1,    1,    1,    1,    1,    1, ...
  1,    1,    2,    3,    6,   10, ...
  1,   -1,    3,   -6,   20,  -50, ...
  1,   -1,    4,  -10,   50, -175, ...
  1,    1,    5,   15,  105,  490, ...
  1,    1,    6,   21,  196, 1176, ...
As a number triangle, T(n-k,k) gives
  1;
  1,   1;
  1,   1,   1;
  1,  -1,   2,   1;
  1,  -1,   3,   3,   1;
  1,   1,   4,  -6,   6,   1;
  1,   1,   5, -10,  20,  10,   1;
  1,  -1,   6,  15,  50, -50,  20,   1;
		

Crossrefs

Programs

  • Magma
    F:= Floor;
    function t(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return (-1)^F(n/2);
      elif (k mod 2) eq 0 then return (&*[ Binomial(n+F(k/2)+j, F(k/2))/Binomial(F(k/2)+j, F(k/2)) : j in [0..F((k-2)/2)] ]);
      else return (-1)^F(n/2)*(&*[ Binomial(n+F((k+1)/2)+j, F((k+1)/2))/Binomial(F((k+1)/2)+j, F((k+1)/2)) : j in [0..F((k-3)/2)] ]);
      end if;
    end function;
    // [[t(n,k): k in [0..10]]: n in [0..10]];
    A133815:= func< n,k | t(n-k, k) >;
    [A133815(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 16 2023
    
  • Mathematica
    T[ n_, m_] := With[{k = Quotient[m + 1, 2]}, (-1)^(Quotient[n, 2] m) Product[ Binomial[n + k + j, k] / Binomial[k + j, k], {j, 0, k - 1 - Mod[m, 2]}]];
    (* Michael Somos, Apr 03 2021 *)
  • PARI
    alias(C, binomial);
    T(n,k) = if (k % 2 == 0, prod(j=0, (k-2)/2, C(n+k/2+j,k/2)/C(k/2+j,k/2)), (cos(Pi*n/2)+sin(Pi*n/2))*prod(j=0, (k-3)/2, C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)));
    tabl(nn) = matrix(nn, nn, n, k, round(T(n-1, k-1))); \\ Michel Marcus, Dec 10 2016
    
  • PARI
    T(n, m) = my(k = (m+1)\2); (-1)^(n\2*m) * prod(j=0, k-1-m%2, binomial(n+k+j, k) / binomial(k+j, k)); /* Michael Somos, Apr 03 2021 */
    
  • SageMath
    def f(k): return (k+1)//2
    def t(n, k): return (-1)^(k*(n//2))*product(binomial(n+f(k) +j, f(k))/binomial(f(k) +j, f(k)) for j in range(f(k-1)))
    def A133815(n,k): return t(n-k, k)
    flatten([[A133815(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 16 2023

Formula

T(n,k) = if(k mod 2 = 0, Product_{j=0..(k-2)/2} C(n+k/2+j,k/2) / C(k/2+j,k/2), (cos(Pi*n/2) + sin(Pi*n/2))*Product_{j=0..(k-3)/2} C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)).

A338158 Triangle read by rows: T(n,k) is the coefficient of x^k in the ZZ polynomial of the hexagonal graphene flake O(3,3,n).

Original entry on oeis.org

20, 30, 12, 1, 175, 450, 425, 180, 33, 2, 980, 3308, 4458, 3065, 1140, 225, 22, 1, 4116, 16468, 27293, 24262, 12521, 3796, 653, 58, 2, 14112, 63522, 120848, 126518, 79506, 30681, 7132, 933, 58, 1, 41580, 204180, 429030, 503664, 361690, 163380, 45885, 7588, 648, 20
Offset: 1

Views

Author

Henryk A. Witek, Oct 14 2020

Keywords

Comments

The maximum k for which T(n,k) is nonzero, denoted as Cl(n), is usually referred to as the Clar number of O(3,3,n); one has: Cl(1)=3, Cl(2)=5, Cl(3)=7, Cl(4)=8, and Cl(n)=9 for n>4.
T(n,k) denotes the number of Clar covers of order k in the hexagonal graphene flake O(3,3,n).
The Kekulé number of O(3,3,n) is given by T(n, 0).
ZZ polynomials of hexagonal graphene flakes O(3,3,n) with n=1..10 are listed in Eq.(36) of Chou, Li and Witek.
ZZ polynomials of hexagonal graphene flakes O(3,3,n) with any n can be obtained from Eq.(13) of Witek, Langner, Mos and Chou.
ZZ polynomials of hexagonal graphene flakes O(3,3,n) can be also computed using ZZDecomposer (see links below), a graphical program to compute ZZ polynomials of general benzenoids.

Examples

			Triangle begins:
       k=0    k=1    k=2    k=3    k=4    k=5   k=6  k=7 k=8 k=9
n=1:    20     30     12      1
n=2:   175    450    425    180     33      2
n=3:   980   3308   4458   3065   1140    225    22    1
n=4:  4116  16468  27293  24262  12521   3796   653   58   2
n=5: 14112  63522 120848 126518  79506  30681  7132  933  58   1
n=6: 41580 204180 429030 503664 361690 163380 45885 7588 648  20
   ...
Row n=4 corresponds to the polynomial 4116 + 16468*x + 27293*x^2 + 24262*x^3 + 12521*x^4 + 3796*x^5 + 653*x^6 + 58*x^7 + 2*x^8.
		

Crossrefs

Column k=0 is A047819.
Other representation of ZZ polynomials of O(3,3,n) is given by A338217.

Programs

  • Maple
    (n,k)->add(binomial(i+k,k)*(binomial(9,i+k)*binomial(n,i+k)+(10*binomial(7,i+k-2)-binomial(6,i+k-2))*binomial(n+1,i+k)+(20*binomial(5,i+k-4)+binomial(3,i+k-3)-binomial(3,i+k-5))*binomial(n+2,i+k)+(10*binomial(3,i+k-6)+binomial(2,i+k-5)+binomial(3,i+k-5))*binomial(n+3,i+k)+binomial(2,i+k-7)*binomial(n+4,i+k)),i = 0..9)

Formula

T(n,k) = Sum_{l=0..9} C(k+l,k) * (C(9,k+l)*C(n,k+l) + (10*C(7,k+l-2) - C(6,k+l-2)) * C(n+1,k+l) + (20*C(5,k+l-4) + C(3,k+l-3) - C(3,k+l-5)) * C(n+2,k+l) + (10*C(3,k+l-6) + C(2,k+l-5) + C(3,k+l-5)) * C(n+3,k+l) + C(2,k+l-7) * C(n+4,k+l)) where C(n,k) = binomial(n,k). This formula can be obtained by a double sum rotation from Eq.(13) of Witek, Langner, Mos and Chou. Eq.(13) was first discovered heuristically as Eq.(37) of Chou, Li and Witek; a formal proof was given in Eqs.(66-71) on pp. 100-102 of Chou and Witek.
Previous Showing 11-15 of 15 results.