A084271
Number of labeled 3-chromatic (i.e., chromatic number = 3) graphs on n nodes.
Original entry on oeis.org
0, 0, 1, 22, 582, 22377, 1353810, 134222308, 22133512793, 6025984082738, 2662612877308658, 1876486379430019037
Offset: 1
A120667
Number of n-node labeled bipartite graphs without isolated nodes.
Original entry on oeis.org
1, 0, 1, 3, 22, 225, 3421, 73668, 2222977, 93033615, 5393456986, 433396737873, 48429436851577, 7548123580987080, 1646092439020192801, 503469306031901522043, 216430661498688457821022, 130959358877474026010486145, 111687660283090149155082836341
Offset: 0
-
a:= n-> coeff (series (sqrt (add (exp (x*(2^k-2)) *x^k/k!, k=0..n)), x, n+1), x, n)*n!: seq (a(n), n=0..20); # Alois P. Heinz, Sep 12 2008
A228859
Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, 67263, 27307, 7035, 1400, 210, 21, 1, 2086099, 668367, 140098, 24045, 3430, 378, 28, 1, 89224635, 22427001, 3746925, 536214, 68355, 7434, 630, 36, 1
Offset: 1
1,
1, 1,
3, 3, 1,
19, 15, 6, 1,
195, 125, 45, 10, 1,
3031, 1545, 480, 105, 15, 1,
-
nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid
-
# uses[bell_matrix from A264428, A001832]
# Adds 1,0,0,0,... as column 0 to the triangle.
bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016
Comments