cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A084271 Number of labeled 3-chromatic (i.e., chromatic number = 3) graphs on n nodes.

Original entry on oeis.org

0, 0, 1, 22, 582, 22377, 1353810, 134222308, 22133512793, 6025984082738, 2662612877308658, 1876486379430019037
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Crossrefs

Formula

a(n) = A084279(n) - A047864(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(7)-a(12) from Andrew Howroyd, Dec 02 2018

A120667 Number of n-node labeled bipartite graphs without isolated nodes.

Original entry on oeis.org

1, 0, 1, 3, 22, 225, 3421, 73668, 2222977, 93033615, 5393456986, 433396737873, 48429436851577, 7548123580987080, 1646092439020192801, 503469306031901522043, 216430661498688457821022, 130959358877474026010486145, 111687660283090149155082836341
Offset: 0

Views

Author

Vladeta Jovovic, Jun 23 2007

Keywords

Crossrefs

Cf. A047864.

Programs

  • Maple
    a:= n-> coeff (series (sqrt (add (exp (x*(2^k-2)) *x^k/k!, k=0..n)), x, n+1), x, n)*n!: seq (a(n), n=0..20);  # Alois P. Heinz, Sep 12 2008

Formula

E.g.f.: sqrt( e.g.f. for A052332 ) = sqrt(Sum_{n>=0} exp(x*(2^n-2)) * x^n/n!).

Extensions

More terms from Alois P. Heinz, Sep 12 2008

A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, 67263, 27307, 7035, 1400, 210, 21, 1, 2086099, 668367, 140098, 24045, 3430, 378, 28, 1, 89224635, 22427001, 3746925, 536214, 68355, 7434, 630, 36, 1
Offset: 1

Views

Author

Geoffrey Critzer, Sep 05 2013

Keywords

Comments

The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016

Examples

			1,
1, 1,
3, 3, 1,
19, 15, 6, 1,
195, 125, 45, 10, 1,
3031, 1545, 480, 105, 15, 1,
		

Crossrefs

Row sums are A047864.
Column 1 is A001832.
Cf. A047863.

Programs

  • Mathematica
    nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid
  • Sage
    # uses[bell_matrix from A264428, A001832]
    # Adds 1,0,0,0,... as column 0 to the triangle.
    bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016

Formula

E.g.f.: sqrt(A(x)^y) where A(x) is the e.g.f. for A047863.
Sum_{k=1..n} T(n,k)*2^k = A047863(n).
Previous Showing 11-13 of 13 results.