Original entry on oeis.org
1, 1, 6, 22, 117, 705, 4972, 39916, 360105, 3606865, 39721266, 477061026, 6205806061, 86925018817, 1304396077272, 20877063837400, 355003736855697, 6391465311099681, 121460116022428510, 2429579599296960430, 51027940329395658981, 1122742916106886416001
Offset: 1
-
A193463:=proc(n): add(A076732(n,k), k=1..n) end: A076732:=proc(n,k): (k/(n-k)!)*A047920(n,k) end: A047920:=proc(n,k): add(((-1)^j)*binomial(k-1,j)*(n-1-j)!, j=0..k-1) end: seq(A193463(n), n=1..22);
-
A000240[n_] := Subfactorial[n] - (-1)^n;
T[n_, k_] := T[n, k] = Switch[k, 1, 1, n, A000240[n], _, k*T[n - 1, k - 1] + T[n - 1, k]];
a[n_] := Sum[T[n, k], {k, 1, n}];
Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Nov 14 2023 *)
A335391
Square array read by antidiagonals downwards: for n >= 2, T(k,n) is the number of permutations of [k+n] that differ in every position from both the identity permutation and a permutation consisting of k 1-cycles and one n-cycle.
Original entry on oeis.org
2, -1, 0, 0, 1, 2, 1, 0, 1, 4, 2, 3, 4, 7, 18, 13, 16, 19, 24, 35, 88, 80, 95, 114, 137, 168, 221, 530, 579, 672, 783, 916, 1077, 1280, 1589, 3708, 4738, 5397, 6164, 7061, 8114, 9359, 10860, 12979, 29666, 43387, 48704, 54773, 61720, 69697, 78888, 89527, 101976, 118663, 266992
Offset: 0
Array starts:
k/n | 0 1 2 3 4 5 6 7
-----------------------------------------------------------------------
0 | 2 -1 0 1 2 13 80 579
1 | 0 1 0 3 16 95 672 5397
2 | 2 1 4 19 114 783 6164 54773
3 | 4 7 24 137 916 7061 61720 602955
4 | 18 35 168 1077 8114 69697 671736 7172007
5 | 88 221 1280 9359 78888 749547 7913440 91815601
6 | 530 1589 10860 89527 837794 8741875 100478588 1260186153
7 | 3708 12979 101976 938181 9669196 110058257 1369406616 18475560567
There are T(1,3)=3 permutations that differ from 1234=(1)(2)(3)(4) and 1342=(1)(234) in every position: 2413, 3421, and 4123.
-
T := proc(n,k) local t; t := proc(n, k) option remember;
simplify((n + k)!*hypergeom([-n], [-n - k], -1)) end:
if k = 0 then return 2*t(n, 0) fi;
add((-1)^j*(2*k)/(2*k-j)*binomial(2*k-j, j)*t(n, k-j), j=0 ..k) end:
seq(lprint(seq(T(n, k), k=0..7)),n=0..7); # Peter Luschny, Jul 22 2020
-
f(k, n) = sum(j=0, k, (-1)^j*binomial(k, j)*(n+k-j)!);
T(k, n) = if (n==0, 2*f(k, 0), sum(j=0, n, (-1)^j*(2*n)/(2*n-j)*binomial(2*n-j, j)*f(k, n-j)));
matrix(7, 7,n, k, T(n-1,k-1))
\\ Michel Marcus, Jun 26 2020
-
def f(k,n):
return sum((-1)^j*binomial(k,j)*factorial(n+k-j) for j in range(0,k+1))
def T(k,n):
if n==0:
return 2*f(k,0)
else:
return sum((-1)^j*(2*n)/(2*n-j)*binomial(2*n-j,j)*f(k,n-j) for j in range(0,n+1))
A116854
First differences of the rows in the triangle of A116853, starting with 0.
Original entry on oeis.org
1, 1, 1, 3, 1, 2, 11, 3, 4, 6, 53, 11, 14, 18, 24, 309, 53, 64, 78, 96, 120, 2119, 309, 362, 426, 504, 600, 720, 16687, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 148329, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 1468457, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
Offset: 1
First few rows of the triangle are:
[1] 1;
[2] 1, 1;
[3] 3, 1, 2;
[4] 11, 3, 4, 6;
[5] 53, 11, 14, 18, 24;
[6] 309, 53, 64, 78, 96, 120;
[7] 2119, 309, 362, 426, 504, 600, 720;
...
For example, row 4 (11, 3, 4, 6) are first differences along row 4 of A116853: ((0), 11, 14, 18, 24).
-
a116854 n k = a116854_tabl !! (n-1) !! (k-1)
a116854_row n = a116854_tabl !! (n-1)
a116854_tabl = [1] : zipWith (:) (tail $ map head tss) tss
where tss = a116853_tabl
-- Reinhard Zumkeller, Aug 31 2014
-
A116853 := proc(n,k) option remember ; if n = k then n! ; else procname(n,k+1)-procname(n-1,k) ; end if; end proc:
A116854 := proc(n,k) if k = 1 then A116853(n,1) ; else A116853(n,k) -A116853(n,k-1) ; end if; end proc:
seq(seq(A116854(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Mar 27 2010
-
rows = 10;
rr = Range[rows]!;
dd = Table[Differences[rr, n], {n, 0, rows - 1}];
T = Array[t, {rows, rows}];
Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;; rows-k+1]]], {k, rows}];
Table[({0}~Join~Table[t[n, k], {k, 1, n}]) // Differences, {n, 1, rows}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)
Definition made concrete and sequence extended by
R. J. Mathar, Mar 27 2010
Original entry on oeis.org
0, 2, 9, 52, 335, 2466, 20447, 189064, 1930959, 21603430, 262869959, 3457226268, 48880169351, 739429561066, 11918051268255, 203914545928336, 3691384616598047, 70491995143458894, 1416242276574905879, 29862732908481855460, 659413025994777460119
Offset: 0
2*x + 9*x^2 + 52*x^3 + 335*x^4 + 2466*x^5 + 20447*x^6 + 189064*x^7 + ...
-
A193465 := proc(n): add(A061312(n,k), k=0..n) end: A061312:=proc(n,k): add(((-1)^j)*binomial(k+1,j)*(n+1-j)!, j=0..k+1) end: seq(A193465(n), n=0..20);
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 + x - (1 + x^2) / Exp[ x ]) / (1 - x)^3, {x, 0, n}]] (* Michael Somos, Jun 06 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( (1 + x - (1 + x^2) / exp(x + x * O(x^n))) / (1 - x)^3, n))} /* Michael Somos, Jun 06 2012 */
A374419
Triangle read by rows: T(n,k) = number of permutations in symmetric group S_n with an even number of non-fixed point cycles, without k<=n particular fixed points.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 4, 3, 3, 3, 3, 36, 32, 29, 26, 23, 20, 296, 260, 228, 199, 173, 150, 130, 2360, 2064, 1804, 1576, 1377, 1204, 1054, 924, 19776, 17416, 15352, 13548, 11972, 10595, 9391, 8337, 7413, 180544, 160768, 143352, 128000, 114452, 102480, 91885, 82494, 74157, 66744
Offset: 0
Triangle array T(n,k) begins:
n: {k<=n}
0: {1}
1: {1, 0}
2: {1, 0, 0}
3: {1, 0, 0, 0}
4: {4, 3, 3, 3, 3}
5: {36, 32, 29, 26, 23, 20}
6: {296, 260, 228, 199, 173, 150, 130}
7: {2360, 2064, 1804, 1576, 1377, 1204, 1054, 924}
T(n,0) = A373339(n) = the number of permutations in S_n without k=0 particular fixed points (i.e., not filtered, so all permutations) with an even number of cycles.
T(n,n) = A216778(n) = the number of permutations in S_n without k=n particular fixed points (i.e., filtered down to just the derangements) with an even number of cycles.
T(4,1<=k<=4) = 3 because S_4 contains 3 permutations with an even number of non-fixed point cycles without k=1,2,3 or 4 particular fixed points, namely the 3 (2,2)-cycles: (12)(34), (13)(24), (14)(23).
T(4,0) = 4 is one more than the above because it includes the permutation without k=0 particular fixed points, i.e., the identity permutation of 4 fixed points.
-
Table[Table[1/2*(Sum[(-1)^j*Binomial[k, j]*(n - j)!, {j, 0, k}] + 2^(n - k - 1)*(2 - n - k)), {k, 0, n}], {n, 0, 10}]
A374420
Triangle T(n, k) for the number of permutations of symmetric group S_n with an odd number of non-fixed point cycles, without k <= n particular fixed points.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 5, 4, 3, 2, 20, 15, 11, 8, 6, 84, 64, 49, 38, 30, 24, 424, 340, 276, 227, 189, 159, 135, 2680, 2256, 1916, 1640, 1413, 1224, 1065, 930, 20544, 17864, 15608, 13692, 12052, 10639, 9415, 8350, 7420, 182336, 161792, 143928, 128320, 114628, 102576, 91937, 82522, 74172, 66752
Offset: 0
Triangle array T(n,k)
n: {k<=n}
0: {0}
1: {0, 0}
2: {1, 1, 1}
3: {5, 4, 3, 2}
4: {20, 15, 11, 8, 6}
5: {84, 64, 49, 38, 30, 24}
6: {424, 340, 276, 227, 189, 159, 135}
7: {2680, 2256, 1916, 1640, 1413, 1224, 1065, 930}
T(n,0) = A373340(n) = the number of permutations in S_n without k=0 particular fixed points (i.e., not filtered, so all permutations) with an odd number of cycles.
T(n,n) = A216779(n) = the number of permutations in S_n without k=n particular fixed points (i.e., filtered down to just the derangements) with an odd number of cycles.
T(2,k) = 1 because S_2 contains 1 permutation with an odd number of non-fixed point cycles without k=0,1 or 2 particular fixed points, namely the derangement (12).
T(3,2) = 3 because S_3 contains 3 permutations with an odd number of non-fixed point cycles without k=2 particular fixed points: say, without fixed points (1) and (2), namely (12)(3), (123), (132).
-
Table[Table[1/2*(Sum[(-1)^j*Binomial[k, j]*(n - j)!, {j, 0, k}] - 2^(n - k - 1)*(2 - n - k)), {k, 0, n}], {n, 0, 10}]
Comments