cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 95 results. Next

A384230 Number of subparts in the central part of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 3, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 4, 0, 1, 0, 0, 2, 3, 0, 0, 0, 2, 0, 4, 0, 0, 4, 0, 0, 2, 1, 1, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 4, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Jun 29 2025

Keywords

Comments

This sequence shares infinitely many terms with A067742 from which first differs at a(18). It also shares with A067742 the positions of zeros and nonzeros.
Observation: consider the 2-dense sublists of divisors of n. At least for the first 88 terms a(n) coincides with the number of odd terms in the central 2-dense sublist of divisors of n. For more information see A384225 and A280940.
See the "Discussion" text file in the first link for more comments.

Examples

			See the "Discussion" text file in the first link for the examples.
		

Crossrefs

Cf. A001227 (number of subparts), A071561 (positions of zeros), A071562 (positions of nonzeros), A237270 (parts), A237271, A237593, A279387 (subparts), A280940, A384225, A335574, A338488, A377654.
See the "Discussion" text file in the first link for more cross-references.

Formula

a(n) = 0 if and only if A067742(n) = 0.
a(n) >= A067742(n).
(a(n) - A067742(n)) is an even number.

Extensions

Edited by Omar E. Pol, Aug 24 2025

A062785 a(n) = Chowla's function of n * sigma(n).

Original entry on oeis.org

0, 0, 0, 14, 0, 60, 0, 90, 39, 126, 0, 420, 0, 216, 192, 434, 0, 780, 0, 882, 320, 468, 0, 2100, 155, 630, 480, 1512, 0, 2952, 0, 1890, 672, 1026, 576, 4914, 0, 1260, 896, 4410, 0, 5088, 0, 3276, 2496, 1800, 0, 9300, 399, 3906, 1440, 4410, 0, 7800, 1152, 7560, 1760, 2790, 0, 17976, 0, 3168, 4160, 7874, 1512
Offset: 1

Views

Author

Jason Earls, Jul 18 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = DivisorSigma[1, n]}, s*(s - n - 1)]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    a(n) = {my(s = sigma(n)); if(n == 1, 0, s*(s-n-1));}

Formula

a(n) = A000203(n)*A048050(n). - Michel Marcus, Jun 29 2018
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6 - Pi^2/18) * n^3. - Amiram Eldar, Apr 01 2024

Extensions

a(1) corrected by Amiram Eldar, Apr 01 2024

A062824 a(n) = Ch(A005117(n)) where Ch(n) is Chowla's function and A005117(n) are the squarefree numbers.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 7, 0, 0, 9, 8, 0, 0, 10, 13, 0, 15, 0, 41, 0, 14, 19, 12, 0, 21, 16, 0, 53, 0, 25, 0, 20, 0, 16, 22, 31, 0, 0, 33, 18, 77, 0, 26, 73, 0, 0, 39, 18, 89, 0, 43, 0, 22, 45, 32, 0, 20, 34, 49, 24, 0, 0, 113, 0, 86, 55, 0, 0, 105, 40, 0, 125, 28, 61, 24, 63, 44, 0, 46, 121, 0, 26, 69, 0, 149, 0, 50, 73, 24, 34, 75, 0
Offset: 1

Views

Author

Jason Earls, Jul 20 2001

Keywords

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; chowla[1] = 0; chowla /@ Select[Range[150], SquareFreeQ] (* Amiram Eldar, Mar 10 2024 *)
  • PARI
    j=[0]; for(n = 2, 150, if(issquarefree(n), j = concat(j, sigma(n)-n-1))); j

Formula

a(n) = A048050(A005117(n)). - Amiram Eldar, Mar 10 2024

Extensions

a(1) corrected by Amiram Eldar, Mar 10 2024

A074844 Largest difference between consecutive divisors of n is equal to the sum of divisors of n except 1 and n.

Original entry on oeis.org

4, 345, 6489, 88473
Offset: 1

Views

Author

Jason Earls, Sep 10 2002

Keywords

Comments

No other term < 600000. - Emeric Deutsch, Aug 04 2005
No more terms < 10^9. - Lars Blomberg, Jun 04 2013
If p = 5^k - 2 is a prime > 3, then 3*p*(p+2)/5 is in this sequence (see A109080). - Charlie Neder, Oct 13 2018
a(5) > 10^13. - Giovanni Resta, Feb 15 2020

Examples

			The divisors of 345 are [1, 3, 5, 15, 23, 69, 115, 345] and the largest difference between consecutive divisors is 345-115 = 230; the sum of divisors except 1 and 345 are 3+5+15+23+69+115 = 230.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): if max(seq(div[j]-div[j-1],j=2..tau(n)))=sigma(n)-1-n then n else fi end: seq(a(n),n=1..100000); # Emeric Deutsch, Aug 04 2005

Extensions

More terms from Emeric Deutsch, Aug 04 2005

A157195 a(n) = 0 if n is 1 or a prime, otherwise a(n) = product of the proper divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 8, 3, 10, 0, 144, 0, 14, 15, 64, 0, 324, 0, 400, 21, 22, 0, 13824, 5, 26, 27, 784, 0, 27000, 0, 1024, 33, 34, 35, 279936, 0, 38, 39, 64000, 0, 74088, 0, 1936, 2025, 46, 0, 5308416, 7, 2500, 51, 2704, 0, 157464, 55, 175616, 57, 58, 0, 777600000
Offset: 1

Views

Author

Jaroslav Krizek, Feb 24 2009, Feb 27 2009

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Aug 01 2012

Examples

			For n = 15 a(15) = 15 = 3*5.
		

Crossrefs

Programs

  • Mathematica
    If[#==1||PrimeQ[#],0,Times@@Most[Divisors[#]]]&/@Range[60] (* Harvey P. Dale, Jan 24 2014 *)
  • PARI
    a(n) = {if ((n == 1) || isprime(n), return (0)); d = divisors(n); prod(i = 2, #d - 1, d[i]);} \\ Michel Marcus, Aug 05 2013
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A157195(n): return 0 if (c:=divisor_count(n)) <= 2 else (isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2-1) # Chai Wah Wu, Jun 25 2022

Formula

a(pq) = pq, p,q = distinct primes. a(p^k) = p^((1/2*k*(k-1)), p = prime, k = integer >=2. a(c) = A007955(c)/c, c = composite number.

Extensions

Edited by N. J. A. Sloane, Mar 03 2009
Definition clarified by Harvey P. Dale, Jan 24 2014

A163871 The n-th composite plus the sum of its nontrivial divisors.

Original entry on oeis.org

6, 11, 14, 12, 17, 27, 23, 23, 30, 38, 41, 31, 35, 59, 30, 41, 39, 55, 71, 62, 47, 53, 47, 90, 59, 55, 89, 95, 83, 77, 71, 123, 56, 92, 71, 97, 119, 71, 119, 79, 89, 167, 95, 103, 126, 83, 143, 125, 95, 143, 194, 113, 123, 139, 95, 167, 185, 120, 125, 223, 107, 131, 119, 179
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2009

Keywords

Comments

Trivial divisors of a number are 1 and the number itself, see A048050.

Examples

			a(1) = 4 + 2 =  6;
a(2) = 6 + 5 = 11;
a(3) = 8 + 6 = 14.
		

Crossrefs

Cf. A027750.

Programs

  • Maple
    A002808 := proc(n) local resul,i ; i := 1 ; resul := 4 ; while i < n do resul := resul+1 ; while isprime(resul) do resul := resul+1 ; od ; i := i+1 ; od; RETURN(resul) ; end:
    A048050 := proc(n) if n <= 3 then 0; else numtheory[sigma](n)-n-1 ; fi; end:
    A163871 := proc(n) A002808(n)+A048050(A002808(n)) ; end: seq(A163871(n),n=1..80) ; # R. J. Mathar, Aug 11 2009
  • Mathematica
    #+Total[Most[Rest[Divisors[#]]]]&/@Select[Range[4,200],!PrimeQ[#]&] (* Harvey P. Dale, Oct 28 2013 *)

Formula

a(n) = A002808(n) + A062825(n+1).

Extensions

a(4) corrected by R. J. Mathar, Aug 11 2009

A164114 Numbers k such that Chowla(k) + phi(k) is prime.

Original entry on oeis.org

3, 6, 10, 12, 20, 22, 24, 44, 46, 54, 58, 66, 68, 70, 78, 80, 82, 84, 88, 90, 106, 116, 120, 136, 138, 154, 156, 160, 166, 168, 174, 178, 184, 186, 188, 190, 192, 212, 226, 234, 246, 250, 252, 258, 262, 270, 284, 286, 300, 306, 318, 320, 328, 330, 332, 336, 346, 352, 356
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 10 2009

Keywords

Comments

Indices such that the sum of the nontrivial divisors and of the Euler totient function at that index is prime.

Examples

			n=3 is in the sequence because Chowla(3) + phi(3) = 0 + 2 = 2 (a prime);
n=6 is in the sequence because Chowla(6) + phi(5) = 5 + 2 = 7 (a prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..400] | IsPrime((SumOfDivisors(n)+EulerPhi(n))-n-1)]; // Vincenzo Librandi, Sep 12 2017
  • Maple
    A048050 := proc(n) if n = 1 then 0; else numtheory[sigma](n)-n-1 ; fi; end:
    A000010 := proc(n) numtheory[phi](n) ; end: isA164114 := proc(n) isprime( A000010(n)+A048050(n)) ; end:
    for n from 1 to 400 do if isA164114(n) then printf("%d,",n): fi; od: # R. J. Mathar, Aug 27 2009
  • Mathematica
    f[n_] := Plus @@ Divisors[n] - n - 1; Select[Range[100], PrimeQ[f[#] + EulerPhi[#]] &] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    isok(n) = isprime(sigma(n)+eulerphi(n)-n-1); \\ Michel Marcus, Sep 12 2017
    

Formula

{k: A048050(k)+A000010(k) in A000040}.

Extensions

34 and 60 removed, 54 inserted by R. J. Mathar, Aug 27 2009

A213675 a(n) = Chowla's function(n) + anti-Chowla's function(n).

Original entry on oeis.org

0, 0, 0, 2, 2, 5, 5, 9, 5, 14, 5, 20, 10, 16, 16, 17, 17, 36, 5, 32, 18, 34, 19, 42, 27, 22, 36, 54, 5, 57, 21, 67, 40, 26, 41, 62, 25, 66, 42, 77, 14, 91, 27, 50, 88, 52, 29, 99, 46, 89, 28, 104, 53, 81, 53, 82, 58, 88, 51, 174, 16, 70, 110, 65, 59, 119, 87, 124, 34, 128
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 04 2013

Keywords

Comments

See A216982 for definition of anti-Chowla's function.

Programs

Formula

a(n) = A048050(n) + A216982(n).

Extensions

a(16) corrected by Charles R Greathouse IV, Mar 05 2013

A222563 Primes p such that the sum of divisors (excluding 1 and p - 1) of p - 1 and the sum of divisors (excluding 1 and p + 1) of p + 1 are both prime.

Original entry on oeis.org

5, 59, 83, 239, 281, 359, 443, 479, 521, 599, 761, 839, 1163, 1319, 1361, 1583, 1619, 1721, 1787, 1871, 1877, 2003, 2063, 2339, 2927, 2969, 3251, 3371, 3407, 3671, 3767, 3917, 4001, 4013, 4229, 4283, 4397, 4451, 4463, 4649, 4679, 5147, 5261, 6287, 6329, 6659, 6689
Offset: 1

Views

Author

Gerasimov Sergey, Feb 25 2013

Keywords

Examples

			83 is in the sequence because: it is prime, the sum of divisors (excluding 1 and 82) of 82 is 2 + 41 = 43, which is prime, and the sum of divisors (excluding 1 and 84) of 84 is 2 + 3 + 4 + 6 + 7 + 12 + 14 + 21 + 28 + 42 = 139, which is also prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2,900]],AllTrue[{Total[Most[Rest[Divisors[#-1]]]], Total[ Most[Rest[Divisors[#+1]]]]},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 29 2016 *)
  • PARI
    is(n)=isprime(n)&&isprime(sigma(n-1)-n)&&isprime(sigma(n+1)-n-2) \\ Charles R Greathouse IV, Feb 25 2013

Extensions

Extended and a(4) and a(6) inserted by Charles R Greathouse IV, Feb 25 2013

A247131 Numbers n > 0 such that a record number of composite numbers k have n as the sum of the nontrivial divisors of k.

Original entry on oeis.org

1, 2, 5, 20, 30, 48, 72, 90, 114, 120, 168, 210, 300, 330, 360, 390, 420, 510, 630, 720, 780, 840, 1050, 1260, 1470, 1560, 1680, 1890, 2100, 2310, 2520, 2730, 3150, 3360, 3570, 3990, 4200, 4410, 4620, 5250, 5460, 6090, 6510, 6720, 6930, 7770, 7980, 8190, 9030, 9240, 10710, 10920, 11550, 13020, 13650, 13860, 15540
Offset: 1

Views

Author

Daniel Lignon, Nov 22 2014

Keywords

Comments

A prime number has no nontrivial divisors so their sum is = 0. That's why we take only composite numbers.

Examples

			For 1, there are no numbers.
For 2, there is 1 number: 4.
For 5, there are 2 numbers: 6 and 25.
For 20, there are 3 numbers: 18, 51, 91.
		

Crossrefs

Cf. A145899 (similar but with all divisors), A238895 (similar but with proper divisors), A048050 (Chowla's function: sum of nontrivial divisors).

Programs

  • Mathematica
    ch[1] = 0; ch[n_] := DivisorSigma[1, n] - n - 1; m = 300; v = Table[0, {m}]; Do[c = ch[k]; If[1 <= c <= m, v[[c]]++], {k, 1, m^2}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 1, m}]; s (* Amiram Eldar, Nov 05 2019 *)

Formula

Obviously a(n) = A238895(n)-1.
Previous Showing 71-80 of 95 results. Next