cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-99 of 99 results.

A307680 Expansion of e.g.f. Product_{k>=1} (1 + x^k/(1 - x)^k)^(1/k).

Original entry on oeis.org

1, 1, 3, 17, 131, 1239, 14029, 187627, 2906553, 50982929, 993806531, 21270277401, 496425262123, 12577053063847, 344382608381421, 10139294386051139, 319175215666010609, 10684742192933940897, 378662321114852778883, 14158327369578651838369, 557151639159864934384851
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 21 2019

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 131*x^4/4! + 1239*x^5/5! + 14029*x^6/6! + 187627*x^7/7! + 2906553*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Exp[Sum[Sum[(-1)^(d + 1), {d, Divisors[k]}] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} A048272(k)*x^k/(k*(1 - x)^k)).
a(n) = Sum_{k=0..n} binomial(n-1,k-1)*A168243(k)*n!/k!.

A325941 Expansion of Sum_{k>=1} k * x^(2*k) / (1 + x^k)^2.

Original entry on oeis.org

0, 1, -2, 5, -4, 4, -6, 17, -14, 6, -10, 28, -12, 8, -36, 49, -16, 13, -18, 46, -52, 12, -22, 100, -44, 14, -68, 64, -28, 24, -30, 129, -84, 18, -92, 121, -36, 20, -100, 166, -40, 32, -42, 100, -192, 24, -46, 292, -90, 31, -132, 118, -52, 40, -148, 232, -148, 30, -58, 264
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[k x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(-1)^(n/d) (n - d), {d, Divisors[n]}], {n, 1, 60}]
  • PARI
    {a(n) = sumdiv(n, d, (-1)^(n/d)*(n-d))} \\ Seiichi Manyama, Sep 14 2019

Formula

G.f.: Sum_{k>=2} (-1)^k * (k - 1) * x^k / (1 - x^k)^2.
a(n) = Sum_{d|n} (-1)^(n/d) * (n - d).
a(n) = A000593(n) - n * A048272(n).

A329393 Number of odd divisors minus number of even divisors of the n-th composite.

Original entry on oeis.org

-1, 0, -2, 3, 0, -2, 0, 4, -3, 0, -2, 4, 0, -4, 3, 0, 4, -2, 0, -4, 4, 0, 4, -3, 0, 4, -4, 0, -2, 6, 0, -6, 3, 0, 4, -2, 0, 4, -4, 4, 0, -4, 0, 6, -5, 4, 0, -2, 4, 0, -6, 0, 6, -2, 4, 0, -6, 5, 0, -4, 4, 0, 4, -4, 0, 4, -2, 4, 0, 4, -8, 0, 6
Offset: 1

Views

Author

Enrique Navarrete, Nov 12 2019

Keywords

Comments

The mode, or most frequent value of this sequence is 0, which corresponds to composites with equal number of odd and even divisors, A016825(n), n >= 1. The next most frequent value is 4.
The value 2 does not appear in this sequence, in contrast to A048272, where A048272(p)=2 for every p = odd prime.

Examples

			a(1) = -1 since the first composite number is 4, which has 1 odd divisor (1), and 2 even divisors (2,4).
a(2) = 0 since the second composite number is 6, which has 2 odd divisors (1,3) and 2 even divisors (2,6).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1 - e, 1 + e]; diffNum[1] = 1; diffNum[n_] := Times @@ (f @@@ FactorInteger[n]); diffNum /@ Select[Range[100], CompositeQ] (* Amiram Eldar, Nov 25 2019 *)
    odmed[n_]:=With[{divs=Divisors[n]},Count[divs,?OddQ]-Count[divs,?EvenQ]]; odmed/@Select[Range[100],CompositeQ] (* Harvey P. Dale, Nov 18 2024 *)

A368744 a(n) = Sum_{d|n} (-1)^(d+1)*phi(d), where phi(n) = A000010(n).

Original entry on oeis.org

1, 0, 3, -2, 5, 0, 7, -6, 9, 0, 11, -6, 13, 0, 15, -14, 17, 0, 19, -10, 21, 0, 23, -18, 25, 0, 27, -14, 29, 0, 31, -30, 33, 0, 35, -18, 37, 0, 39, -30, 41, 0, 43, -22, 45, 0, 47, -42, 49, 0, 51, -26, 53, 0, 55, -42, 57, 0, 59, -30, 61, 0, 63, -62, 65, 0, 67, -34, 69, 0, 71, -54, 73, 0, 75
Offset: 1

Views

Author

Peter Bala, Jan 21 2024

Keywords

Comments

Recall Gauss's identity Sum_{d|n} phi(d) = n.
a(n) is a multiplicative function of n since both (-1)^(n+1) and phi(n) are multiplicative functions of n.

Crossrefs

Programs

  • Maple
    with(numtheory): seq( add( (-1)^(d+1)*phi(d), d in divisors(n)), n = 1..75);
  • Mathematica
    A368744[n_] := DivisorSum[n, (-1)^(#+1)*EulerPhi[#]&];
    Array[A368744, 100] (* Paolo Xausa, Jan 30 2024 *)
    a[n_] := (2^(1-IntegerExponent[n, 2]) - 1) * n ; Array[a, 100] (* Amiram Eldar, Jan 31 2024 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*eulerphi(d)); \\ Michel Marcus, Jan 30 2024
    
  • PARI
    a(n) = (2/(1<Amiram Eldar, Jan 31 2024
    
  • Python
    def A368744(n): return ((n<<1)>>(~n & n-1).bit_length())-n # Chai Wah Wu, Jan 30 2024

Formula

a(n) = -Sum_{k = 1..n} (-1)^(lcm(k, n)/k) = -Sum_{k = 1..n} (-1)^(n/gcd(k, n)).
a(2*n+1) = 2*n + 1; a(4*n+2) = 0.
Multiplicative: a(2^k) = 2 - 2^k and for odd prime p, a(p^k) = p^k.
Dirichlet g.f.: (1 - 3/2^s)/(1 - 1/2^s) * zeta(s-1).
From Amiram Eldar, Jan 31 2024: (Start)
a(n) = (2/A006519(n) - 1) * n.
Sum_{k=1..n} a(k) ~ n^2/6. (End)

A369100 Dirichlet g.f.: zeta(s)^3 * (1 - 2^(1-s))^2.

Original entry on oeis.org

1, -1, 3, -2, 3, -3, 3, -2, 6, -3, 3, -6, 3, -3, 9, -1, 3, -6, 3, -6, 9, -3, 3, -6, 6, -3, 10, -6, 3, -9, 3, 1, 9, -3, 9, -12, 3, -3, 9, -6, 3, -9, 3, -6, 18, -3, 3, -3, 6, -6, 9, -6, 3, -10, 9, -6, 9, -3, 3, -18, 3, -3, 18, 4, 9, -9, 3, -6, 9, -9, 3, -12, 3, -3, 18
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[-(-1)^d, {d, Divisors[k]}]*(-1)^(n/k+1), {k, Divisors[n]}], {n, 1, 100}]
    f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := (e^2 - 5*e + 2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 13 2024 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e=f[i,2]; if(p == 2, (e^2-5*e+2)/2, (e+1)*(e+2)/2));} \\ Amiram Eldar, Jan 13 2024

Formula

Sum_{k=1..n} a(k) ~ n * log(2)^2.
Multiplicative with a(2^e) = (e^2-5*e+2)/2, and a(p^e) = (e+1)*(e+2)/2 for an odd prime p. - Amiram Eldar, Jan 13 2024

A373275 a(n) = Sum_{d|n} (-1)^(d-1) * 2^(n/d-1).

Original entry on oeis.org

1, 1, 5, 5, 17, 29, 65, 117, 261, 497, 1025, 2017, 4097, 8129, 16405, 32629, 65537, 130845, 262145, 523765, 1048645, 2096129, 4194305, 8386641, 16777233, 33550337, 67109125, 134209477, 268435457, 536855053, 1073741825, 2147450741, 4294968325, 8589869057
Offset: 1

Views

Author

Seiichi Manyama, May 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*2^(n/d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x)^k/(1+x^k))/2)

Formula

G.f.: 1/2 * Sum_{k>=1} (2*x)^k / (1 + x^k).
If p is an odd prime, a(p) = 1 + 2^(p-1).

A373276 a(n) = Sum_{d|n} (-1)^(d-1) * 3^(n/d-1).

Original entry on oeis.org

1, 2, 10, 23, 82, 236, 730, 2156, 6571, 19604, 59050, 176918, 531442, 1593596, 4783060, 14346689, 43046722, 129133838, 387420490, 1162241726, 3486785140, 10460294156, 31381059610, 94143003584, 282429536563, 847288078004, 2541865834900, 7625595889958
Offset: 1

Views

Author

Seiichi Manyama, May 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*3^(n/d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (3*x)^k/(1+x^k))/3)

Formula

G.f.: 1/3 * Sum_{k>=1} (3*x)^k / (1 + x^k).
If p is an odd prime, a(p) = 1 + 3^(p-1).

A304907 Expansion of x * (d/dx) 1/(1 - Sum_{k>=1} x^k/(1 + x^k)).

Original entry on oeis.org

0, 1, 2, 9, 16, 35, 84, 161, 312, 639, 1240, 2354, 4536, 8593, 16128, 30360, 56672, 105213, 195174, 360582, 664040, 1220730, 2238324, 4095035, 7479552, 13636750, 24821108, 45114813, 81887008, 148438211, 268763160, 486082263, 878200416, 1585098372, 2858378368, 5149986275
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Comments

Sum of all parts of all Carlitz compositions (compositions without adjacent equal parts) of n.

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[x D[1/(1 - Sum[x^k/(1 + x^k), {k, 1, nmax}]), x], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[-(-1)^d, {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[n a[n], {n, 0, 35}]

Formula

a(n) = n*A003242(n).

A369101 Dirichlet g.f.: zeta(s-3)^2 * (1 - 2^(4-s)) / zeta(s).

Original entry on oeis.org

1, -1, 53, -64, 249, -53, 685, -960, 2133, -249, 2661, -3392, 4393, -685, 13197, -11264, 9825, -2133, 13717, -15936, 36305, -2661, 24333, -50880, 46625, -4393, 76545, -43840, 48777, -13197, 59581, -118784, 141033, -9825, 170565, -136512, 101305, -13717, 232829
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 13 2024

Keywords

Comments

In general, for k > 0, if Dirichlet g.f. is zeta(s-k)^2 * (1 - 2^(k+1-s)) / zeta(s), then a(n) ~ log(2) * n^(k+1) / ((k+1) * zeta(k+1)).

Crossrefs

Cf. A048272 (k=0), A332794 (k=1), A368929 (k=2).

Programs

  • Mathematica
    Table[Sum[DivisorSum[k, #^3*MoebiusMu[k/#]&]*(-1)^(n/k+1)*(n/k)^3, {k, Divisors[n]}], {n, 1, 50}]
    f[p_, e_] := p^(3*e-3) * (1 + (e+1)*(p^3-1)); f[2, e_] := -(7*e-6)*8^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 13 2024 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e=f[i,2]; if(p == 2, -(7*e-6)*8^(e-1), p^(3*e-3) * (1 + (e+1)*(p^3-1))));} \\ Amiram Eldar, Jan 13 2024

Formula

Sum_{k=1..n} a(k) ~ 45 * log(2) * n^4 / (2*Pi^4).
Multiplicative with a(2^e) = -(7*e-6)*8^(e-1), and a(p^e) = p^(3*e-3) * (1 + (e+1)*(p^3-1)) for an odd prime p. - Amiram Eldar, Jan 13 2024
Previous Showing 91-99 of 99 results.