cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A059864 a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.

Original entry on oeis.org

1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Such products arise in Hardy-Littlewood prime k-tuplet conjectural formulas.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
    
  • SageMath
    def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
    [A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023

A060147 Nim-binomial transform of the Nim-squares sequence {0,1,3,2,6,7,5,4,13,12,14,...}.

Original entry on oeis.org

0, 1, 3, 0, 6, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John W. Layman, Mar 06 2001

Keywords

Comments

The Nim-binomial transform of the Nim-squares consists of the Nim-squares of the terms of the Nim-binomial transform of the integers (given in A048298).
Multiplicative with a(2^e) = A006017(e), a(p^e) = 0 otherwise. - David W. Wilson, Jun 12 2005

Crossrefs

See A048298.

Formula

a(n) = n X n, where Nim-multiplication is used, if n=2^k, else a(n)=0.

A368540 The smallest unitary divisor d of n such that n/d is a term of A138302.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 125, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

First differs from A368167 at n = 64 and from A367513 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), 1, f[i, 1]^f[i, 2]));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A368540(n): return prod(p**e for p, e in factorint(n).items() if not e or (e&-e)^e) # Chai Wah Wu, Dec 30 2023

Formula

a(n) = n / A367168(n).
Multiplicative with a(p^e) = p^(e-A048298(e)).
a(n) >= 1, with equality if and only if n is in A138302.

A372504 Multiplicative with a(p^e) = e if e is a power of 2, and 0 otherwise.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 4, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1 << valuation(x, 2), x, 0), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A048298(e) = A209229(e) * e.
a(n) = A355823(n) * A005361(n).
a(A138302(n)) = A005361(A138302(n)) = A368473(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.31285540951965780409..., where f(x) = (1-x) * (1 + Sum_{k>=0} 2^k * x^(2^k)).

A060146 Take the first 2n integers and using each integer once and only once as either a numerator or a denominator, construct n fractions whose sum is an integer; a(n) = number of distinct solutions for n.

Original entry on oeis.org

1, 1, 7, 21, 190, 1007, 6972, 111554, 1040635
Offset: 1

Views

Author

Jack Brennen, May 13 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A048298.

Programs

  • PARI
    { npairs(n) = loca(r,q,z); r=0;
    forvec(p=vector(n,i,[1,2*n]),
    q = eval( setminus( Set(vector(2*n,i,i)), Set(p) ) );
    for(j=1,n!,
    z=numtoperm(n,j);
    if(type( sum(j=1,#p,p[j]/q[z[j]]) )=="t_INT",r++); );, 2); r }
    /* Max Alekseyev, May 14 2008 */

Extensions

a(6)-a(8) from Max Alekseyev, May 14 2008
Edited by Charles R Greathouse IV, Oct 28 2009
a(9) from Sean A. Irvine, Oct 29 2022
Previous Showing 21-25 of 25 results.