cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A048404 Primes with consecutive digits that differ exactly by 7.

Original entry on oeis.org

2, 3, 5, 7, 29, 181, 929, 18181, 929292929, 18181818181818181818181818181818181818181818181818181818181818181818181818181
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1999

Keywords

Comments

The next term (a(11)) has 163 digits. - Harvey P. Dale, Mar 23 2023

Crossrefs

Programs

  • Mathematica
    Module[{s18,s81,s29,s92},s18=Select[Table[FromDigits[PadRight[{},n,{1,8}]],{n,1,181,2}],PrimeQ]; s81=Select[Table[FromDigits[PadRight[{},n,{8,1}]],{n,2,182,2}],PrimeQ];s29 = Select[ Table[FromDigits[PadRight[{},n,{2,9}]],{n,2,182,2}],PrimeQ]; s92 =Select[Table[ FromDigits[ PadRight[{},n,{9,2}]],{n,1,183,2}],PrimeQ]; Join[{2,3,5,7},s18,s81,s29,s92]//Sort] (* Harvey P. Dale, Mar 23 2023 *)

A048403 Primes with consecutive digits that differ exactly by 6.

Original entry on oeis.org

2, 3, 5, 7, 17, 71, 1717171717171717171717171717171, 1717171717171717171717171717171717171
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1999

Keywords

Comments

From Andrew Howroyd, Aug 13 2024: (Start)
Terms with more than 1 digit have digits alternating between 1 and 7.
No more terms < 10^3000. (End)

Crossrefs

Programs

  • PARI
    upto(limit)={my(L=List([t|t<-[2,3,5],t<=limit]),m=1); while(mAndrew Howroyd, Aug 13 2024

Extensions

Offset changed by Andrew Howroyd, Aug 13 2024

A052017 Primes with digits in ascending order that differ exactly by 1.

Original entry on oeis.org

2, 3, 5, 7, 23, 67, 89, 4567, 23456789
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

Primes in A138141. - Omar E. Pol, Dec 07 2008

Crossrefs

Cf. A138141. - Omar E. Pol, Dec 07 2008

A167842 Right-angled primes.

Original entry on oeis.org

101, 787, 12343, 34543, 54323, 56543, 654323, 1234543, 7654567, 345676543, 987654323, 32123456789, 34567876543, 654323456789
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2009

Keywords

Comments

Primes in A135602.
Primes whose structure of digits represents a right angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite.

Crossrefs

Extensions

More terms from Jens Kruse Andersen, Jun 26 2014

A052016 Primes with digits in descending order that differ exactly by 1.

Original entry on oeis.org

2, 3, 5, 7, 43, 76543
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

Primes in A138142. - Omar E. Pol, Dec 07 2008

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Module[{id=IntegerDigits[n],}, n < 10 || Union[Differences[id]] == {-1}]; Select[Prime[Range[10000]], fQ] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)

A059170 Strictly undulating primes (digits alternate and differ by 1).

Original entry on oeis.org

2, 3, 5, 7, 23, 43, 67, 89, 101, 787, 32323, 78787, 1212121, 323232323, 989898989, 12121212121, 32323232323, 787878787878787878787, 787878787878787878787878787, 1212121212121212121212121212121212121212121
Offset: 1

Views

Author

N. J. A. Sloane, Feb 14 2001

Keywords

Comments

Of form ababa... with |a-b| = 1.
The next two terms have 95 and 139 digits respectively. - Jayanta Basu, May 09 2013

References

  • C. A. Pickover, "Keys to Infinity", Wiley 1995, pp. 159-160.
  • C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.

Crossrefs

Programs

  • Mathematica
    a[n_]:=DeleteDuplicates[Take[IntegerDigits[n],{1,-1,2}]]; b[n_]:=DeleteDuplicates[Take[IntegerDigits[n],{2,-1,2}]]; t={}; Do[p=Prime[n]; If[p<10, AppendTo[t,p], If[Length[a[p]] == Length[b[p]] == 1 && Abs[a[p][[1]]-b[p][[1]]] == 1, AppendTo[t,p]]], {n,10^5}]; t (* Jayanta Basu, May 08 2013 *)
    t1=Join[{2,3,5,7},Select[Range[10,100],PrimeQ[#]&&Abs[Differences[IntegerDigits[#]]]=={1}&]]; Do[a=n*10+(n-1);b=(n-1)*10+n; t1=Join[t1,Select[Table[(a*10^(2*n+1)-b)/99,{n,25}],PrimeQ]]; If[n<=7,c=n*10+(n+1);d=(n+1)*10+n;t1=Join[t1,Select[Table[(c*10^(2*n+1)-d)/99,{n,25}],PrimeQ]]],{n,1,9,2}]; Sort[t1] (* Jayanta Basu, May 09 2013 *)
     With[{c=Flatten[{#,Reverse[#]}&/@Table[{a,a+1},{a,0,8}],1]},Flatten[ Select[ Table[ FromDigits[PadRight[{},n,#]],{n,50}],PrimeQ]&/@c]]//Union (* Harvey P. Dale, Aug 20 2022 *)

Extensions

Extended by Patrick De Geest, Feb 25 2001
Offset corrected by Arkadiusz Wesolowski, Sep 13 2011

A089291 Prime worms (as defined below).

Original entry on oeis.org

101, 787, 12101, 32323, 34543, 78787, 1012321, 1212121, 3212123, 3212323, 3454343, 7654567, 7656787, 7676567, 7678787, 7876567, 7898767, 101012321, 101210101, 101232121, 121232101, 123210121, 123232121, 321234343, 323232323
Offset: 1

Views

Author

Enoch Haga, Dec 23 2003

Keywords

Comments

By analogy, primes of this type are worms with a head and tail and body composed of the same digit which weaves in and out of the prime. In a(2)=12101 the worm is defined by the digit 1.

Examples

			a(2)=12101 because that number is prime with identical first and last digits. Then abs(1-2)=1; abs(2-1)=1; abs(1-0)=1; abs(0-1)=1; and sum of absolute values is 4, one less than the 5 digits in the prime.
		

References

  • The concept is due to Carlos Rivera in his Puzzle 246 (where he asks for the first pandigital prime worm and for the first pandigital titanic prime worm - solutions are at his site).

Crossrefs

This is a subset of A048398. Cf. A089315-A089317, A048398-A048405.

Formula

Primes whose first and last digits are identical and whose successive digit differences have a uniformly absolute value of 1. Thus the sum of absolute values is one less than the number of digits in the prime. No two adjacent digits are identical or differ by more than one.

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A089315 Prime worms [successive digit differences with absolute value of 3].

Original entry on oeis.org

14741, 74747, 1414741, 1474141, 14141414141, 14141414741, 14141474741, 14147414741, 14147474141, 74141414147, 1474741414141, 7474141474747, 7474741414747, 14141474141414141, 14147414747474741, 14147474147474741
Offset: 0

Views

Author

Enoch Haga, Dec 25 2003

Keywords

Comments

One of a family of prime worms differing according to the uniform absolute value of successive digit pairs. Sequence checked to 10^9.
This is a subset of A048400. Cf. A089291, A089316-A089317, A048398-A048405.

Examples

			a(1)=74747 because the number is prime, has identical first and last digits and abs(7-4)=3; abs(4-7)=3; abs(7-4)=3 and abs(4-7)=3. In this number, the worm is 7.
		

References

  • Carlos Rivera's primepuzzles.net, Puzzle 246.

Formula

Select prime numbers having the same first and last digits; if the uniform absolute value of successive digit differences is 3, add to sequence.

Extensions

More terms from David Wasserman, Sep 09 2005

A089317 Prime worms [successive digit differences with absolute value of 4].

Original entry on oeis.org

151, 373, 95959, 9515959, 159595151, 159595951, 15151595951, 15951595151, 95951515159, 1515159515951, 1515959515951, 1515959595151, 1595159515151, 1595159595151, 9515151515159, 9515159515159, 9515159595959, 9595159515959
Offset: 0

Views

Author

Enoch Haga, Dec 25 2003

Keywords

Examples

			a(1)=373; first and last digits are 3; abs(3-7)=4; abs(7-3)=4; the worm is 3.
		

References

  • Carlos Rivera's primepuzzles.net, Puzzle 246

Crossrefs

This is a subsequence of A048401. Cf. A089291, A089315-A089316, A048398-A048405.

Formula

Select prime numbers having the same first and last digits; if the uniform absolute value of successive digit differences is 4, add to sequence.

Extensions

More terms from David Wasserman, Sep 09 2005

A089316 Prime worms [successive digit differences with absolute value of 2].

Original entry on oeis.org

131, 313, 353, 757, 797, 35353, 35753, 75797, 79757, 97579, 3131353, 3135313, 3531313, 7535797, 313131353, 313135313, 313579753, 353535313, 357531313, 357531353, 357535753, 357575753, 357975353, 753535357, 757975357, 975353579
Offset: 0

Views

Author

Enoch Haga, Dec 25 2003

Keywords

Examples

			a(4)=797; first and last digits are 7; abs(7-9)=2; abs(9-7)=2; the worm is 7.
		

Crossrefs

Cf. A089291.
This is a subset of A048399. Cf. A089291, A089315, A089317, A048398-A048405.

Programs

  • Mathematica
    pwQ[n_]:=Module[{idn=IntegerDigits[n]},First[idn]==Last[idn]&&Union[Abs[ Differences[idn]]]=={2}]; Select[Prime[Range[50000000]],pwQ] (* Harvey P. Dale, Mar 26 2013 *)

Formula

Select prime numbers having the same first and last digits; if the uniform absolute value of successive digit differences is 2, add to sequence.
Previous Showing 11-20 of 21 results. Next