cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A048442 Take the first n numbers written in base 11, concatenate them, then convert from base 11 to base 10.

Original entry on oeis.org

1, 13, 146, 1610, 17715, 194871, 2143588, 23579476, 259374245, 2853116705, 345227121316, 41772481679248, 5054470283189021, 611590904265871555, 74002499416170458170, 8954302429356625438586, 1083470593952151678068923, 131099941868210353046339701
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(11) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(10) = 123456789A10_11 = 345227121316.
		

Crossrefs

Cf. A014881.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: this sequence, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1) * 11^(1+Ilog(11, n)) + n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 11]]]; Table[AppendTo[n, IntegerDigits[w, 11]]; n=Flatten[n]; FromDigits[n, 11], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 11], 11]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)
  • PARI
    { cuo=0;
    for(ixp=1, 18, casi = ixp; cvst=0;
    while(casi != 0,
    cvd = casi%11; cvst=100*cvst + cvd + 1; casi = (casi - cvd) / 11 );
    while(cvst !=0, ptch = cvst%100;
    cuo=cuo*11+ptch-1; cvst = (cvst - ptch) / 100 ); print1(cuo, ", "))}
    \\ Douglas Latimer, May 09 2012
    

Extensions

1 more term from Douglas Latimer, May 10 2012

A048443 Take the first n numbers written in base 12, concatenate them, then convert from base 12 to base 10.

Original entry on oeis.org

1, 14, 171, 2056, 24677, 296130, 3553567, 42642812, 511713753, 6140565046, 73686780563, 10610896401084, 1527969081756109, 220027547772879710, 31683966879294678255, 4562491230618433668736, 656998737209054448298001, 94607818158103840554912162
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(12) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(10) = 123456789AB10_12 = 10610896401084.
		

Crossrefs

Cf. A014882.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: this sequence, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*12^(1+Ilog(12, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 12]]]; Table[AppendTo[n, IntegerDigits[w, 12]]; n=Flatten[n]; FromDigits[n, 12], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 12], 12]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048444 Take the first n numbers written in base 13, concatenate them, then convert from base 13 to base 10.

Original entry on oeis.org

1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 355457590375459, 60072332773452585, 10152224238713486880, 1715725896342579282736, 289957676481895898782401, 49002847325440406894225787
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

No primes in the first 31000 terms. - Giovanni Resta, Jun 08 2018

Examples

			a(12) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C) = 123456789ABC_13 = 2103299351334.
		

Crossrefs

Cf. A014896.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: this sequence, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*13^(1+Ilog(13, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 13]]]; Table[AppendTo[n, IntegerDigits[w, 13]]; n=Flatten[n]; FromDigits[n, 13], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 13], 13]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048445 Take the first n numbers written in base 14, concatenate them, then convert from base 14 to base 10.

Original entry on oeis.org

1, 16, 227, 3182, 44553, 623748, 8732479, 122254714, 1711566005, 23961924080, 335466937131, 4696537119846, 65751519677857, 12887297856859986, 2525910379944557271, 495078434469133225132, 97035373155950112125889, 19018933138566221976674262, 3727710895158979507428155371
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(14) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(10) = 123456789ABCD10_14 = 12887297856859986.
		

Crossrefs

Cf. A014897.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: this sequence, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*14^(1+Ilog(14, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 14]]]; Table[AppendTo[n, IntegerDigits[w, 14]]; n=Flatten[n]; FromDigits[n, 14], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 14], 14]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048446 Take the first n numbers written in base 15, concatenate them, then convert from base 15 to base 10.

Original entry on oeis.org

1, 17, 258, 3874, 58115, 871731, 13075972, 196139588, 2942093829, 44131407445, 661971111686, 9929566675302, 148943500129543, 2234152501943159, 502684312937210790, 113103970410872427766, 25448393342446296247367, 5725888502050416655657593, 1288324912961343747522958444
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(14) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(E) = 123456789ABCDE_15 = 2234152501943159.
		

Crossrefs

Cf. A014898.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: this sequence, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1) * 15^(1+Ilog(15, n)) + n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 15]]]; Table[AppendTo[n, IntegerDigits[w, 15]]; n=Flatten[n]; FromDigits[n, 15], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 15], 15]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A360502 Concatenate the ternary strings for 1,2,...,n.

Original entry on oeis.org

1, 12, 1210, 121011, 12101112, 1210111220, 121011122021, 12101112202122, 12101112202122100, 12101112202122100101, 12101112202122100101102, 12101112202122100101102110, 12101112202122100101102110111, 12101112202122100101102110111112, 12101112202122100101102110111112120
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2023

Keywords

Comments

If the terms are read as ternary strings and converted to base 10, we get A048435. For example, a(2) = 12_3 = 5_10, which is A048435(2). This is a prime, and gives the first term of A360503.
If the terms are read as decimal numbers, which of them are primes? 12101112202122100101102110111, for example, is not a prime, since it is 37*327057086543840543273030003.
When read as decimal numbers, the first prime is a(7315), with 56003 digits. - Michael S. Branicky, Apr 18 2023

Examples

			a(4): concatenate 1, 2, 10, 11, getting 121011.
		

Crossrefs

This is the ternary analog of A007908.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, (l-> parse(cat(
          a(n-1), seq(l[-i], i=1..nops(l)))))(convert(n, base, 3)))
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Feb 17 2023
  • Mathematica
    nn = 15; s = IntegerDigits[Range[nn], 3]; Array[FromDigits[Join @@ s[[1 ;; #]]] &, nn] (* Michael De Vlieger, Apr 19 2023 *)
  • Python
    from sympy.ntheory import digits
    def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in range(1, n+1)))
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 18 2023
    
  • Python
    # faster version for initial segment of sequence
    from sympy.ntheory import digits
    from itertools import count, islice
    def agen(s=""): yield from (int(s:=s+"".join(map(str, digits(n, 3)[1:]))) for n in count(1))
    print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 18 2023

A360506 Read A360505(n) as if it were a base-3 string and write it in base 10.

Original entry on oeis.org

1, 7, 34, 358, 4003, 43369, 456712, 4708240, 47754961, 1339156591, 39693785002, 1169411930926, 34213667699203, 995038950807565, 28790341783585180, 829295063367580492, 23793774263808446005, 680307709052882601259, 19390954850541496025998
Offset: 1

Views

Author

N. J. A. Sloane, Feb 17 2023

Keywords

Comments

This has the same relationship to A360505 as A048435 does to A360502.
The primes in A048435 are in A360503. What are the primes in the present sequence?
Answer: The first primes are a(2) = 7, a(5) = 4003, a(13) = 34213667699203, a(57) and a(109). See A360507. - Rémy Sigrist, Feb 18 2023

Examples

			A360505(4) = 111021 and 111021_3 = 358_10 = a(4).
		

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(concat([digits(k, 3) | k <- Vecrev([1..n])]), 3) \\ Rémy Sigrist, Feb 18 2023
    
  • Python
    from sympy.ntheory import digits
    def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in range(n, 0, -1)), 3)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 19 2023
    
  • Python
    # faster version for initial segment of sequence
    from sympy.ntheory import digits
    from itertools import count, islice
    def agen(s=""): yield from (int(s:="".join(map(str, digits(n, 3)[1:]))+s, 3) for n in count(1))
    print(list(islice(agen(), 20))) # Michael S. Branicky, Feb 19 2023
    
  • Python
    from itertools import count, islice
    def A360506_gen(): # generator of terms
        a, b, c = 3, 1, 0
        for i in count(1):
            if i >= a:
                a *= 3
            c += i*b
            yield c
            b *= a
    A360506_list = list(islice(A360506_gen(),30)) # Chai Wah Wu, Nov 08 2023

Formula

a(n) = A028898(A360505(n)). - Rémy Sigrist, Feb 18 2023

Extensions

More terms from Rémy Sigrist, Feb 18 2023

A350510 Square array read by descending antidiagonals: A(n,k) is the least number m such that the base-n expansion of m contains the base-n expansions of 1..k as substrings.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 12, 11, 6, 1, 44, 38, 27, 7, 1, 44, 95, 75, 38, 8, 1, 92, 285, 331, 194, 51, 9, 1, 184, 933, 1115, 694, 310, 66, 10, 1, 1208, 2805, 4455, 3819, 1865, 466, 83, 11, 1, 1256, 7179, 17799, 16444, 8345, 3267, 668, 102, 12, 1
Offset: 2

Views

Author

Davis Smith, Jan 02 2022

Keywords

Examples

			Square array begins:
n/k|| 1 |  2 |   3 |    4 |     5 |      6 |       7 |        8 |
================================================================|
2  || 1 |  2 |   6 |   12 |    44 |     44 |      92 |      184 |
3  || 1 |  5 |  11 |   38 |    95 |    285 |     933 |     2805 |
4  || 1 |  6 |  27 |   75 |   331 |   1115 |    4455 |    17799 |
5  || 1 |  7 |  38 |  194 |   694 |   3819 |   16444 |    82169 |
6  || 1 |  8 |  51 |  310 |  1865 |   8345 |   55001 |   289577 |
7  || 1 |  9 |  66 |  466 |  3267 |  22875 |  123717 |   947260 |
8  || 1 | 10 |  83 |  668 |  5349 |  42798 |  342391 |  2177399 |
9  || 1 | 11 | 102 |  922 |  8303 |  74733 |  672604 |  6053444 |
10 || 1 | 12 | 123 | 1234 | 12345 | 123456 | 1234567 | 12345678 |
11 || 1 | 13 | 146 | 1610 | 17715 | 194871 | 2143588 | 23579476 |
		

Crossrefs

The first n - 1 terms of rows: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Mathematica
    T[n_,k_]:=(m=0;While[!ContainsAll[Subsequences@IntegerDigits[++m,n],IntegerDigits[Range@k,n]]];m);Flatten@Table[T[1+i,j+1-i],{j,9},{i,j}] (* Giorgos Kalogeropoulos, Jan 09 2022 *)
  • PARI
    A350510_rows(n,k,N=0)= my(L=List(concat(apply(z->fromdigits([1..z],n),[1..n-1]),if(n>2,fromdigits(concat([1,0],[2..n-1]),n),[]))),T1(x)=digits(x,n),T2(x)=fromdigits(x,n),A(x)=my(S=T1(x));setbinop((y,z)->T2(S[y..z]),[1..#S]),N=if(N,N,L[#L]),A1=A(N));while(#Lsetsearch(A1,z),[1..#L+1])),A1=A(N++));listput(L,N));Vec(L)

Formula

For k < n, A(n,k) = A(n,k - 1)*n + k = Sum_{i=1..k} i*(n^(k - i)).
A(n,n) = A049363(n).
A(n,2) = A057544(n).
For n > 3, A(n,3) = A102305(n).
A(n,n - 1) = A023811(n).

A179069 Array read by antidiagonals: row b lists the base-b analog of the base-10 sequence 1, 12, 123, ..., 123456789, 12345678910, ... (A007908).

Original entry on oeis.org

1, 1, 3, 1, 6, 6, 1, 5, 27, 10, 1, 6, 48, 220, 15, 1, 7, 27, 436, 1765, 21, 1, 8, 38, 436, 3939, 14126, 28, 1, 9, 51, 194, 6981, 35367, 113015, 36, 1, 10, 66, 310, 4855, 111702, 318310, 1808248
Offset: 1

Views

Author

Jonathan Vos Post, Jun 27 2010

Keywords

Comments

The numbers in the row b of the array are constructed in base b, but are converted to base 10 for display here.
R. K. Guy writes [UPINT, A3, pp. 9-10]: Selfridge asked if the sequence (in decimal notation) 1, 12, 123, 1234, ... [A007908] ... contains infinitely many primes.... The question can be asked for other scales of notation. There are (trivially) an infinite number of primes in the n=2 column, as that converges to k+2. In the n=3 column, the first prime is A[3,8] = 83 (base 10) = 123 (base 8). In the n=7 column, the first prime is A[8,7] = 342391 (base 10) = 1234567 (base 8). This can be continued to bases higher than 10, where A, B, C, ... are conventionally used as numerals. For example, A[12,5] = 12345 (base 12) = 24677 (base 10) is prime, as is A[12,17] = 656998737209054448298001 (base 10). A[13,3] = 227 (base 10) = 123 (base 13) is prime. Similarly, to pick the 9th row but go further than the table shown here, A[9,14] = 1709671414851143033 (base 10) is prime. Existing OEIS sequences stop at A048447, the concatenation of first n numbers in base 16.

Examples

			The array begins:
====================================================================
....|n=1.|.n=2.|.n=3.|.n=4.|..n=5.|..n=6.|...n=7.|.....n=8.|.in OEIS
b=1.|.1..|...3.|...6.|..10.|...15.|...21.|....28.|......36.|.A000217
b=2.|.1..|...6.|..27.|.220.|.1765.|.14126|.113015|.1808248.|.A047778
b=3.|.1..|...5.|..48.|.436.|.3929.|.35367|.318310|.2864798.|.A048435
b=4.|.1..|...6.|..27.|.436.|.6981.|111702|1787239|28595832.|.A048436
b=5.|.1..|...7.|..38.|.194.|.4855.|121381|3034532|75863308.|.A048437
b=6.|.1..|...8.|..51.|.310.|.1865.|.67146|2417263|87021476.|.A048438
b=7.|.1..|...9.|..66.|.466.|.3267.|.22875|1120882|54923226.|.A048439
b=8.|.1..|..10.|..83.|.668.|.5349.|.42798|.342391|21913032.|.A048440
...
b=10|.1..|..12.|.123.|1234.|12345.|123456|1234567|12345678.|.A007908
=====================================================================
		

References

  • Richard K. Guy, Unsolved Problems In Number Theory, 2nd Edn., Springer Verlag, 1994.

Crossrefs

Formula

A[b,n] = n-th integer concatenated from consecutive integers in base b.

Extensions

Should be revised to start with base 2, rather than the ill-defined "base 1". - N. J. A. Sloane, Jul 05 2010

A360507 Numbers k such that A360506(k) is prime.

Original entry on oeis.org

2, 5, 13, 57, 109, 638, 3069
Offset: 1

Views

Author

Rémy Sigrist and N. J. A. Sloane, Feb 18 2023

Keywords

Comments

Analogous to A360503, which gives the primes in A048435.

Examples

			A360506(5) = 4003 is prime, so 5 is a term.
		

Crossrefs

Extensions

a(6)-a(7) from Michael S. Branicky, Feb 18 2023
Previous Showing 11-20 of 21 results. Next