cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A309912 a(n) = Product_{p prime, p <= n} floor(n/p).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 22 2019

Keywords

Comments

Product of exponents of prime factorization of A048803 (squarefree factorials).

Examples

			A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
  • Python
    from math import prod
    from sympy import primerange
    def A309912(n): return prod(n//p for p in primerange(n)) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = Product_{k=1..A000720(n)} floor(n/A000040(k)).
a(n) = A005361(A048803(n)).

A368092 a(n) = A160014(m, n) * a(n - 1) for m = 2 and n > 0, a(0) = 1.

Original entry on oeis.org

1, 3, 9, 135, 405, 8505, 127575, 382725, 1148175, 189448875, 3978426375, 155158628625, 2327379429375, 6982138288125, 20946414864375, 37389350532909375, 112168051598728125, 6393578941127503125, 1054940525286038015625, 3164821575858114046875, 66461253093020394984375
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

A160014 are the generalized Clausen numbers. For m = 0 the formula computes the cumulative radical A048803, for m = 1 the Hirzebruch numbers A091137.

Crossrefs

Cf. A160014, A048803 (m=0), A091137 (m=1), this sequence (m=2), A368093 (array), A368048, A368117.

Programs

  • SageMath
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i + 2, divisors(n)) if is_prime(s))
        return p * a_rec(n - 1)
    print([a_rec(n) for n in range(21)])
    # Alternatively, but less efficient:
    def a(n): return (2**(n%2 - n) * lcm(product(r + 2 for r in p) for p in Partitions(n)))

Formula

a(n) = 2^(n mod 2 - n)*lcm_{p in Partitions(n)} (Product_{t in p}(t + 2)).
a(n) = 2^(n mod 2 - n)*A368048(n).
a(n) = A368117(n) * a(n-1) for n > 0.

A368093 Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

A160014 are the generalized Clausen numbers, for m = 0 the formula computes the cumulative radical A048803, and for m = 1 the Hirzebruch numbers A091137.

Examples

			Array A(m, n) starts:
  [0] 1, 1,  2,   6,   12,     60,     360,      2520, ...  A048803
  [1] 1, 2, 12,  24,  720,   1440,   60480,    120960, ...  A091137
  [2] 1, 3,  9, 135,  405,   8505,  127575,    382725, ...  A368092
  [3] 1, 1,  5,   5,  175,    175,     875,       875, ...
  [4] 1, 5, 25, 875, 4375,  21875,  765625,  42109375, ...
  [5] 1, 1,  7,   7,   49,     49,    3773,      3773, ...
  [6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
  [7] 1, 1,  1,   1,   11,     11,     143,       143, ...
  [8] 1, 1,  1,  11,   11,    143,    1573,      1573, ...
  [9] 1, 1, 11,  11, 1573,   1573,   17303,     17303, ...
		

Crossrefs

Cf. A160014, A048803 (m=0), A091137 (m=1), A368092 (m=2).

Programs

  • SageMath
    from functools import cache
    def Clausen(n, k):
        return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
    @cache
    def CumProdClausen(m, n):
        return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
    for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])

Formula

A(m, n) = A160014(m, n) * A(m, n - 1) for n > 0 and A(m, 0) = 1.

A387126 Triangle read by rows: T(n, k) = (n! / (n - k)!) * Product_{k=1..n} radical(k), where radical(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 1, 2, 4, 4, 6, 18, 36, 36, 12, 48, 144, 288, 288, 60, 300, 1200, 3600, 7200, 7200, 360, 2160, 10800, 43200, 129600, 259200, 259200, 2520, 17640, 105840, 529200, 2116800, 6350400, 12700800, 12700800, 5040, 40320, 282240, 1693440, 8467200, 33868800, 101606400, 203212800, 203212800
Offset: 0

Views

Author

Peter Luschny, Aug 18 2025

Keywords

Examples

			Triangle begins:
  [0]    1;
  [1]    1,     1;
  [2]    2,     4,      4;
  [3]    6,    18,     36,     36;
  [4]   12,    48,    144,    288,     288;
  [5]   60,   300,   1200,   3600,    7200,    7200;
  [6]  360,  2160,  10800,  43200,  129600,  259200,   259200;
  [7] 2520, 17640, 105840, 529200, 2116800, 6350400, 12700800, 12700800;
		

Crossrefs

Cf. A007947 (radical), A008279, A048803 (column 0), A277174 (main diagonal).

Programs

  • Maple
    A387126 := (n, k) -> mul(NumberTheory:-Radical(j), j = 1..n) * n! / (n - k)!:
  • Mathematica
    A387126[n_, k_] := Pochhammer[n-k+1, k] Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
    Table[A387126[n, k], {n, 0, 8}, {k, 0, n}]  // Flatten

Formula

T(n, k) = A048803(n) * A008279(n, k).

A387138 Triangle read by rows: T(n, k) = binomial(n, k) * Product_{k=1..n} radical(k), where radical(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 12, 48, 72, 48, 12, 60, 300, 600, 600, 300, 60, 360, 2160, 5400, 7200, 5400, 2160, 360, 2520, 17640, 52920, 88200, 88200, 52920, 17640, 2520, 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040
Offset: 0

Views

Author

Peter Luschny, Aug 18 2025

Keywords

Examples

			Triangle begins:
  [0]    1;
  [1]    1,     1;
  [2]    2,     4,      2;
  [3]    6,    18,     18,      6;
  [4]   12,    48,     72,     48,     12;
  [5]   60,   300,    600,    600,    300,     60;
  [6]  360,  2160,   5400,   7200,   5400,   2160,    360;
  [7] 2520, 17640,  52920,  88200,  88200,  52920,  17640,  2520;
  [8] 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040;
		

Crossrefs

Cf. A007318 (binomial), A007947 (radical), A048803 (column 0 and main diagonal), A387139 (row sums), A387126.

Programs

  • Maple
    A387138 := (n, k) -> binomial(n, k) * mul(NumberTheory:-Radical(j), j = 1..n):
  • Mathematica
    A387138[n_, k_] := Binomial[n, k] Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
    Table[A387138[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = A048803(n) * A007318(n, k).

A387141 a(n) = floor((Product_{k=1..n} radical(k))^(1/n)) for n >= 1, a(0) = 1, where radical(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 13, 14, 14, 14, 15, 15, 15, 16, 15, 16, 16
Offset: 0

Views

Author

Peter Luschny, Aug 18 2025

Keywords

Crossrefs

Programs

  • Maple
    a := n -> if n = 0 then 1 else floor(mul(NumberTheory:-Radical(k), k = 1..n)^(1/n)) fi:
  • Mathematica
    A387141[n_] := If[n == 0, 1, Floor[Power[Times @@ ResourceFunction["IntegerRadical"][Range[1, n]], 1/n]]]; Table[A387141[n], {n, 0, 74}]

Formula

a(n) = floor(A048803(n)^(1/n)) for n >= 1.

A068625 Reduced root factorial of n: product of the smallest integer root of numbers from 1 to n.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, 108972864000, 1852538688000, 33345696384000, 633568231296000, 12671364625920000, 266098657144320000, 5854170457175040000, 134645920515025920000
Offset: 0

Views

Author

Amarnath Murthy, Feb 26 2002

Keywords

Comments

A "binomial" style a(m+n)/(a(m)*a(n)) is not always an integer, as for instance at m = n = 18 (unlike ordinary factorials or A048803). - Hal M. Switkay, Jul 22 2024

Examples

			a(8) = 1*2*3*2*5*6*7*2 = 5040.
		

Crossrefs

Partial products of A052410.

Programs

  • Maple
    b:= proc(n) option remember; (l-> (t-> mul(i[1]^(i[2]/t),
           i=l))(igcd(seq(i[2], i=l))))(ifactors(n)[2])
        end:
    a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*b(n)) end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 22 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 22 2024

A100777 Square-factorial numbers: a(1) = 1, a(n+1) = a(n) * largest square divisor of (n+1).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 16, 144, 144, 144, 576, 576, 576, 576, 9216, 9216, 82944, 82944, 331776, 331776, 331776, 331776, 1327104, 33177600, 33177600, 298598400, 1194393600, 1194393600, 1194393600, 1194393600, 19110297600, 19110297600, 19110297600, 19110297600
Offset: 1

Views

Author

Amarnath Murthy, Nov 28 2004

Keywords

Comments

Complementary to A048803 which can be defined as squarefree factorials.
Partial products of A008833. - Ray Chandler, Nov 29 2004

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*Floor[e/2]); s[n_] := Times @@ (f @@@ FactorInteger[n]); FoldList[Times, 1, Array[s, 31, 2]] (* Amiram Eldar, Dec 07 2020 *)

Extensions

More terms from Amiram Eldar, Dec 07 2020

A239682 Product_{i=1..n} A173557(i).

Original entry on oeis.org

1, 1, 2, 2, 8, 16, 96, 96, 192, 768, 7680, 15360, 184320, 1105920, 8847360, 8847360, 141557760, 283115520, 5096079360, 20384317440, 244611809280, 2446118092800, 53814598041600, 107629196083200, 430516784332800, 5166201411993600, 10332402823987200
Offset: 1

Views

Author

Tom Edgar, Mar 24 2014

Keywords

Comments

This is the generalized factorial for A173557.

Examples

			The first five terms of A173557 are 1,1,2,1,4 so a(5)=4*1*2*1*1=8.
		

Crossrefs

Programs

  • Sage
    q=50 # change q for more terms
    R=[prod([(x-1) for x in prime_divisors(n)]) for n in [1..q]]
    [prod(R[0:i+1]) for i in [0..q-1]]

Formula

Product_{i=1..n} A173557(i).
a(n) = abs(A085542(n)).

A276998 Coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x) where B_k(x) are the Bernoulli polynomials.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, -1, 72, 24, -24, 1, 1440, 120, -960, 200, 37, 43200, -9360, -44280, 20640, 3750, -1493, 1814400, -997920, -2484720, 2028600, 271740, -378966, 14017, 25401600, -23042880, -42497280, 54159840, 3328080, -18236064, 1977248, 751267
Offset: 0

Views

Author

Peter Luschny, Oct 03 2016

Keywords

Examples

			Sequence of rational polynomials P_n(x) starts:
1;
1;
(2*x + 1)/2;
(12*x^2 + 6*x - 1)/6;
(72*x^3 + 24*x^2 - 24*x + 1)/12;
(1440*x^4 + 120*x^3 - 960*x^2 + 200*x + 37)/60;
(43200*x^5 - 9360*x^4 - 44280*x^3 + 20640*x^2 + 3750*x - 1493)/360;
Triangle starts:
[1]
[1]
[2, 1]
[12, 6, -1]
[72, 24, -24, 1]
[1440, 120, -960, 200, 37]
[43200, -9360, -44280, 20640, 3750, -1493]
		

Crossrefs

T(n,0) = A277174(n)/n for n>=1.

Programs

  • Maple
    P := proc(n) local B;
    B := (n, x) -> CompleteBellB(n, seq(k!*bernoulli(k, x), k=0..n)):
    sort(A048803(n)*B(n, x)) end:
    A276998_row := n -> PolynomialTools[CoefficientList](P(n), x, termorder=reverse):
    seq(op(A276998_row(n)), n=0..8);
    # Recurrence for the rational polynomials:
    A276998_poly := proc(n,x) option remember; local z; if n = 0 then return 1 fi;
    z := proc(k) option remember; k!*bernoulli(k,x) end;
    expand(add(binomial(n-1,j)*z(n-j-1)*A276998_poly(j,x),j=0..n-1)) end:
    for n from 0 to 5 do sort(A276998_poly(n,x)) od;
  • Mathematica
    (* b = A048803 *) b[0] = 1; b[n_] := b[n] = b[n-1] First @ Select[ Reverse @ Divisors[n], SquareFreeQ, 1];
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    B[n_, x_] := CompleteBellB[n, Table[k!*BernoulliB[k, x], {k, 0, n}]];
    P[n_] := b[n] B[n, x];
    row[0] = {1}; row[n_] := CoefficientList[P[n], x] // Reverse;
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)

Formula

P_n(x) = Y_n(x_0, x_1, x_2,..., x_n), the complete Bell polynomials evaluated at x_k = k!*B_k(x) and B_k(x) the Bernoulli polynomials.
T(n,k) = A048803(n)*[x^k] P_n(x).
Previous Showing 11-20 of 22 results. Next