A309912
a(n) = Product_{p prime, p <= n} floor(n/p).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
Offset: 0
A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
-
a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 23 2019
-
Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
-
from math import prod
from sympy import primerange
def A309912(n): return prod(n//p for p in primerange(n)) # Chai Wah Wu, Jun 02 2025
A368092
a(n) = A160014(m, n) * a(n - 1) for m = 2 and n > 0, a(0) = 1.
Original entry on oeis.org
1, 3, 9, 135, 405, 8505, 127575, 382725, 1148175, 189448875, 3978426375, 155158628625, 2327379429375, 6982138288125, 20946414864375, 37389350532909375, 112168051598728125, 6393578941127503125, 1054940525286038015625, 3164821575858114046875, 66461253093020394984375
Offset: 0
-
from functools import cache
@cache
def a_rec(n):
if n == 0: return 1
p = mul(s for s in map(lambda i: i + 2, divisors(n)) if is_prime(s))
return p * a_rec(n - 1)
print([a_rec(n) for n in range(21)])
# Alternatively, but less efficient:
def a(n): return (2**(n%2 - n) * lcm(product(r + 2 for r in p) for p in Partitions(n)))
A368093
Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Array A(m, n) starts:
[0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137
[2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092
[3] 1, 1, 5, 5, 175, 175, 875, 875, ...
[4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...
[5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...
[6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
[7] 1, 1, 1, 1, 11, 11, 143, 143, ...
[8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...
[9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
-
from functools import cache
def Clausen(n, k):
return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
@cache
def CumProdClausen(m, n):
return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
A387126
Triangle read by rows: T(n, k) = (n! / (n - k)!) * Product_{k=1..n} radical(k), where radical(n) is the product of distinct prime factors of n, cf. A007947.
Original entry on oeis.org
1, 1, 1, 2, 4, 4, 6, 18, 36, 36, 12, 48, 144, 288, 288, 60, 300, 1200, 3600, 7200, 7200, 360, 2160, 10800, 43200, 129600, 259200, 259200, 2520, 17640, 105840, 529200, 2116800, 6350400, 12700800, 12700800, 5040, 40320, 282240, 1693440, 8467200, 33868800, 101606400, 203212800, 203212800
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 2, 4, 4;
[3] 6, 18, 36, 36;
[4] 12, 48, 144, 288, 288;
[5] 60, 300, 1200, 3600, 7200, 7200;
[6] 360, 2160, 10800, 43200, 129600, 259200, 259200;
[7] 2520, 17640, 105840, 529200, 2116800, 6350400, 12700800, 12700800;
-
A387126 := (n, k) -> mul(NumberTheory:-Radical(j), j = 1..n) * n! / (n - k)!:
-
A387126[n_, k_] := Pochhammer[n-k+1, k] Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
Table[A387126[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A387138
Triangle read by rows: T(n, k) = binomial(n, k) * Product_{k=1..n} radical(k), where radical(n) is the product of distinct prime factors of n, cf. A007947.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 12, 48, 72, 48, 12, 60, 300, 600, 600, 300, 60, 360, 2160, 5400, 7200, 5400, 2160, 360, 2520, 17640, 52920, 88200, 88200, 52920, 17640, 2520, 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 2, 4, 2;
[3] 6, 18, 18, 6;
[4] 12, 48, 72, 48, 12;
[5] 60, 300, 600, 600, 300, 60;
[6] 360, 2160, 5400, 7200, 5400, 2160, 360;
[7] 2520, 17640, 52920, 88200, 88200, 52920, 17640, 2520;
[8] 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040;
-
A387138 := (n, k) -> binomial(n, k) * mul(NumberTheory:-Radical(j), j = 1..n):
-
A387138[n_, k_] := Binomial[n, k] Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
Table[A387138[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A387141
a(n) = floor((Product_{k=1..n} radical(k))^(1/n)) for n >= 1, a(0) = 1, where radical(n) is the product of distinct prime factors of n, cf. A007947.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 13, 14, 14, 14, 15, 15, 15, 16, 15, 16, 16
Offset: 0
-
a := n -> if n = 0 then 1 else floor(mul(NumberTheory:-Radical(k), k = 1..n)^(1/n)) fi:
-
A387141[n_] := If[n == 0, 1, Floor[Power[Times @@ ResourceFunction["IntegerRadical"][Range[1, n]], 1/n]]]; Table[A387141[n], {n, 0, 74}]
A068625
Reduced root factorial of n: product of the smallest integer root of numbers from 1 to n.
Original entry on oeis.org
1, 1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, 108972864000, 1852538688000, 33345696384000, 633568231296000, 12671364625920000, 266098657144320000, 5854170457175040000, 134645920515025920000
Offset: 0
a(8) = 1*2*3*2*5*6*7*2 = 5040.
-
b:= proc(n) option remember; (l-> (t-> mul(i[1]^(i[2]/t),
i=l))(igcd(seq(i[2], i=l))))(ifactors(n)[2])
end:
a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*b(n)) end:
seq(a(n), n=0..23); # Alois P. Heinz, Jul 22 2024
A100777
Square-factorial numbers: a(1) = 1, a(n+1) = a(n) * largest square divisor of (n+1).
Original entry on oeis.org
1, 1, 1, 4, 4, 4, 4, 16, 144, 144, 144, 576, 576, 576, 576, 9216, 9216, 82944, 82944, 331776, 331776, 331776, 331776, 1327104, 33177600, 33177600, 298598400, 1194393600, 1194393600, 1194393600, 1194393600, 19110297600, 19110297600, 19110297600, 19110297600
Offset: 1
-
f[p_, e_] := p^(2*Floor[e/2]); s[n_] := Times @@ (f @@@ FactorInteger[n]); FoldList[Times, 1, Array[s, 31, 2]] (* Amiram Eldar, Dec 07 2020 *)
Original entry on oeis.org
1, 1, 2, 2, 8, 16, 96, 96, 192, 768, 7680, 15360, 184320, 1105920, 8847360, 8847360, 141557760, 283115520, 5096079360, 20384317440, 244611809280, 2446118092800, 53814598041600, 107629196083200, 430516784332800, 5166201411993600, 10332402823987200
Offset: 1
The first five terms of A173557 are 1,1,2,1,4 so a(5)=4*1*2*1*1=8.
A276998
Coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x) where B_k(x) are the Bernoulli polynomials.
Original entry on oeis.org
1, 1, 2, 1, 12, 6, -1, 72, 24, -24, 1, 1440, 120, -960, 200, 37, 43200, -9360, -44280, 20640, 3750, -1493, 1814400, -997920, -2484720, 2028600, 271740, -378966, 14017, 25401600, -23042880, -42497280, 54159840, 3328080, -18236064, 1977248, 751267
Offset: 0
Sequence of rational polynomials P_n(x) starts:
1;
1;
(2*x + 1)/2;
(12*x^2 + 6*x - 1)/6;
(72*x^3 + 24*x^2 - 24*x + 1)/12;
(1440*x^4 + 120*x^3 - 960*x^2 + 200*x + 37)/60;
(43200*x^5 - 9360*x^4 - 44280*x^3 + 20640*x^2 + 3750*x - 1493)/360;
Triangle starts:
[1]
[1]
[2, 1]
[12, 6, -1]
[72, 24, -24, 1]
[1440, 120, -960, 200, 37]
[43200, -9360, -44280, 20640, 3750, -1493]
-
P := proc(n) local B;
B := (n, x) -> CompleteBellB(n, seq(k!*bernoulli(k, x), k=0..n)):
sort(A048803(n)*B(n, x)) end:
A276998_row := n -> PolynomialTools[CoefficientList](P(n), x, termorder=reverse):
seq(op(A276998_row(n)), n=0..8);
# Recurrence for the rational polynomials:
A276998_poly := proc(n,x) option remember; local z; if n = 0 then return 1 fi;
z := proc(k) option remember; k!*bernoulli(k,x) end;
expand(add(binomial(n-1,j)*z(n-j-1)*A276998_poly(j,x),j=0..n-1)) end:
for n from 0 to 5 do sort(A276998_poly(n,x)) od;
-
(* b = A048803 *) b[0] = 1; b[n_] := b[n] = b[n-1] First @ Select[ Reverse @ Divisors[n], SquareFreeQ, 1];
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
B[n_, x_] := CompleteBellB[n, Table[k!*BernoulliB[k, x], {k, 0, n}]];
P[n_] := b[n] B[n, x];
row[0] = {1}; row[n_] := CoefficientList[P[n], x] // Reverse;
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
Comments