cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A330865 Decimal expansion of cosh(Pi/2)/Pi.

Original entry on oeis.org

7, 9, 8, 6, 9, 6, 3, 1, 5, 9, 5, 6, 4, 6, 3, 0, 8, 4, 8, 6, 3, 8, 0, 6, 7, 0, 4, 2, 2, 1, 0, 9, 6, 1, 3, 8, 6, 9, 1, 4, 9, 2, 8, 7, 4, 1, 8, 5, 1, 2, 9, 1, 2, 3, 4, 8, 3, 7, 2, 6, 6, 4, 0, 6, 4, 5, 9, 0, 2, 4, 3, 1, 1, 2, 9, 6, 8, 6, 5, 4, 3, 0, 6, 7, 6, 6, 4, 1, 0, 6, 5, 9, 8, 7, 3, 9, 6, 2, 3, 2, 2, 2, 5, 7, 1, 0, 1, 5, 8, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 - 1/2^2) * (1 + 1/3^2) * (1 - 1/4^2) * (1 + 1/5^2) * (1 - 1/6^2) * ... = (e^(Pi/2) + e^(-Pi/2))/(2*Pi) = 0.7986963159564630848638067...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Pi/2]/Pi, 10, 110] [[1]]
  • PARI
    cosh(Pi/2)/Pi \\ Michel Marcus, Apr 28 2020

Formula

Equals Sum_{k>=0} Pi^(2*k-1)/(4^k*(2*k)!).
Equals Product_{k>=2} (1 - (-1)^k/k^2).
Equals (i^(-i) + i^i)/(2*Pi), where i is the imaginary unit.

A383851 Decimal expansion of exp(8*G/Pi)*((1 - exp(-Pi/2))/(1 + exp(-Pi/2)))^2, where G is Catalan's constant (A006752).

Original entry on oeis.org

4, 4, 3, 1, 2, 0, 1, 3, 0, 7, 1, 9, 4, 1, 9, 9, 1, 9, 7, 0, 8, 2, 3, 6, 7, 7, 2, 8, 3, 5, 5, 2, 8, 7, 2, 9, 3, 2, 8, 3, 8, 0, 1, 5, 2, 8, 1, 0, 1, 2, 2, 7, 4, 7, 3, 5, 6, 3, 2, 0, 9, 2, 1, 4, 3, 8, 9, 6, 8, 0, 7, 5, 8, 5, 8, 7, 0, 0, 3, 6, 5, 3, 8, 3, 2, 5, 6, 4, 2, 0
Offset: 1

Views

Author

Paolo Xausa, May 13 2025

Keywords

Examples

			4.4312013071941991970823677283552872932838015281012...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Exp[8*Catalan/Pi]*((1 - #)/(1 + #))^2 & [Exp[-Pi/2]], 10, 100]]

Formula

Equals Product_{i=0..oo} (1 + 4/(2*i+1)^4)^((-1)^i*(2*i+1)) (from Ramanujan).

A083283 Engel expansion for i^i = exp(-Pi/2).

Original entry on oeis.org

5, 26, 42, 45, 84, 2577, 6837, 18441, 43190, 65404, 502536, 2987594, 5828519, 41429808, 431610158, 1524989277, 4301621811, 5681026585, 21585646103, 26950130930, 174893227975, 334043333925, 453875893331, 633636954317, 17921965531082, 29347098990308
Offset: 1

Views

Author

Hauke Worpel (hw1(AT)email.com), Jun 03 2003

Keywords

Crossrefs

Extensions

Offset and name corrected by Alois P. Heinz, Nov 22 2020

A321161 Decimal expansion of Wilf's formula: Product_{k>=1} exp(-1/k)*(1 + 1/k + 1/(2*k^2)) = exp(-gamma)*cosh(Pi/2)/(Pi/2).

Original entry on oeis.org

8, 9, 6, 8, 7, 1, 2, 4, 2, 1, 6, 7, 3, 7, 9, 0, 2, 1, 6, 9, 0, 2, 3, 0, 3, 1, 9, 0, 8, 6, 3, 6, 7, 0, 0, 5, 6, 2, 2, 5, 3, 0, 6, 4, 9, 0, 8, 1, 7, 0, 4, 8, 8, 6, 6, 8, 1, 5, 7, 7, 9, 0, 1, 6, 5, 1, 9, 6, 6, 4, 5, 2, 8, 0, 3, 9, 1, 5, 6, 8, 8, 1, 8, 6, 7, 3, 0
Offset: 0

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The formula was discovered by Wilf in 1997.

Examples

			0.896871242167379021690230319086367005622530649081704...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2011, p. 366.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-EulerGamma]*Cosh[Pi/2]/(Pi/2), 10, 100][[1]]
  • PARI
    exp(-Euler)*cosh(Pi/2)/(Pi/2) \\ Michel Marcus, Jan 15 2019

A334624 Decimal expansion of Pi + e + phi + sqrt(2) + i^i - 1/10.

Original entry on oeis.org

9, 0, 0, 0, 0, 0, 1, 6, 0, 9, 5, 2, 2, 5, 9, 0, 2, 7, 9, 3, 7, 6, 1, 6, 2, 0, 3, 3, 0, 4, 2, 4, 8, 0, 3, 4, 8, 2, 7, 8, 2, 7, 5, 3, 8, 9, 8, 8, 9, 5, 4, 5, 9, 3, 9, 3, 2, 9, 1, 7, 6, 4, 6, 3, 7, 8, 3, 3, 0, 5, 8, 5, 5, 2, 0, 6, 2, 4, 8, 2, 2, 1, 5, 4, 5, 6, 1, 2, 0, 2, 0, 2, 4, 9, 7, 4, 2
Offset: 1

Views

Author

Michal Paulovic, Sep 09 2020

Keywords

Comments

A near-integer obtained by subtracting one tenth from the sum of Archimedes's constant, Napier's constant, golden ratio, Pythagoras's constant and the imaginary unit to the power of itself.

Examples

			9.0000016095...
		

Crossrefs

Programs

  • MATLAB
    pi + exp(1) + (sqrt(5)+1)/2 + sqrt(2) + i^i - 1/10
  • Maple
    Digits:=100; evalf(Pi + exp(1) + (sqrt(5)+1)/2 + sqrt(2) + I^I - 1/10);
  • Mathematica
    RealDigits[Pi + Exp[1] + GoldenRatio + Sqrt[2] + Re[I^I] - 1/10, 10, 100][[1]]
  • PARI
    Pi + exp(1) + (sqrt(5)+1)/2 + sqrt(2) + real(I^I) - 1/10
    

Formula

Equals Pi + e + (sqrt(5)+1)/2 + sqrt(2) + e^(-Pi/2) - 1/10.

A356983 Decimal expansion of Pi * e^(-Pi/2).

Original entry on oeis.org

6, 5, 3, 0, 7, 2, 9, 4, 9, 8, 9, 4, 9, 1, 2, 1, 3, 1, 3, 8, 9, 5, 3, 1, 8, 8, 1, 1, 1, 7, 2, 2, 5, 4, 3, 1, 5, 6, 7, 6, 0, 0, 1, 4, 5, 3, 6, 8, 3, 6, 9, 1, 1, 6, 9, 4, 6, 7, 9, 7, 8, 2, 7, 5, 5, 1, 9, 2, 2, 5, 8, 5, 7, 6, 0, 9, 0, 8, 5, 2, 2, 3, 4, 3, 7, 7, 3, 8, 5, 3, 9, 5, 3, 1, 8, 2, 4
Offset: 0

Views

Author

Christoph B. Kassir, Sep 07 2022

Keywords

Examples

			0.653072949894912131389531881117225431...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi * Exp[-Pi/2], 10, 100][[1]]
  • PARI
    Pi * exp(-Pi/2)

Formula

Equals Integral_{x=0..Pi} i^tan(x) dx, where i is the imaginary unit.
Previous Showing 21-26 of 26 results.