A302545
Number of non-isomorphic multiset partitions of weight n with no singletons.
Original entry on oeis.org
1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
Offset: 0
The a(4) = 12 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
The set-system version is
A330054 (no endpoints) or
A306005 (no singletons).
Non-isomorphic multiset partitions are
A007716.
Set-systems with no singletons are
A016031.
Cf.
A049311,
A283877,
A293606,
A293607,
A306008,
A317533,
A317794,
A317795,
A320665,
A330053,
A330055,
A330058.
-
\\ compare with similar program for A007716.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023
A056156
Number of connected bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
Original entry on oeis.org
1, 2, 3, 7, 12, 32, 67, 181, 458, 1295, 3642, 10975, 33448, 106424, 345964, 1159489, 3975367, 13977808, 50238606, 184629655, 692757132, 2652892219, 10359676617, 41233344350, 167171988557, 690054189750, 2898637406813, 12385234548345
Offset: 1
From _Gus Wiseman_, Sep 24 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(4) = 7 connected set multipartitions:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{1}} {{2},{1,2}} {{3},{1,2,3}}
{{1},{1},{1}} {{1,2},{1,2}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
(End)
A306021
Number of set-systems spanning {1,...,n} in which all sets have the same size.
Original entry on oeis.org
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0
The a(3) = 6 set-systems in which all sets have the same size:
{{1,2,3}}
{{1}, {2}, {3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,3}, {2,3}}
Cf.
A000005,
A001315,
A007716,
A038041,
A049311,
A283877,
A298422,
A306017,
A306018,
A306019,
A306020.
-
Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
-
a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024
A319559
Number of non-isomorphic T_0 set systems of weight n.
Original entry on oeis.org
1, 1, 1, 2, 4, 7, 16, 35, 82, 200, 517, 1373, 3867, 11216, 33910, 105950
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1: {{1}}
2: {{1},{2}}
3: {{2},{1,2}}
{{1},{2},{3}}
4: {{1,3},{2,3}}
{{1},{2},{1,2}}
{{1},{3},{2,3}}
{{1},{2},{3},{4}}
5: {{1},{2,4},{3,4}}
{{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{4},{3,4}}
{{1},{2},{3},{4},{5}}
Cf.
A007716,
A007718,
A049311,
A053419,
A056156,
A059201,
A283877,
A305854,
A306006,
A316980,
A317757.
A318361
Number of strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 0, 2, 0, 1, 0, 5, 1, 0, 0, 4, 0, 0, 0, 15, 0, 5, 0, 1, 0, 0, 0, 16, 0, 0, 8, 0, 0, 2, 0, 52, 0, 0, 0, 23, 0, 0, 0, 7, 0, 0, 0, 0, 5, 0, 0, 68, 0, 1, 0, 0, 0, 40, 0, 1, 0, 0, 0, 14, 0, 0, 1, 203, 0, 0, 0, 0, 0, 0, 0, 111, 0, 0, 4, 0, 0, 0, 0, 41, 80, 0, 0
Offset: 1
The a(24) = 16 sets of sets with multiset union {1,1,2,3,4}:
{{1},{1,2,3,4}}
{{1,2},{1,3,4}}
{{1,3},{1,2,4}}
{{1,4},{1,2,3}}
{{1},{2},{1,3,4}}
{{1},{3},{1,2,4}}
{{1},{4},{1,2,3}}
{{1},{1,2},{3,4}}
{{1},{1,3},{2,4}}
{{1},{1,4},{2,3}}
{{2},{1,3},{1,4}}
{{3},{1,2},{1,4}}
{{4},{1,2},{1,3}}
{{1},{2},{3},{1,4}}
{{1},{2},{4},{1,3}}
{{1},{3},{4},{1,2}}
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,90}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, s[1]==1, count(sig(n))))} \\ Andrew Howroyd, Dec 18 2018
A321742
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in e(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 1, 1, 3, 6, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 5, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Triangle begins:
1
1
0 1
1 2
0 0 1
0 1 3
0 0 0 0 1
1 3 6
0 1 0 2 6
0 0 0 1 4
0 0 0 0 0 0 1
0 2 1 5 12
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 5
0 0 0 1 0 3 10
1 6 4 12 24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 5 2 12 30
For example, row 12 gives: e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111).
Cf.
A008480,
A049311,
A056239,
A116540,
A124794,
A124795,
A300121,
A319193,
A321738,
A321742-
A321765,
A321854.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And[And@@UnsameQ@@@#,Sort[Length/@#]==primeMS[k]]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]
A306005
Number of non-isomorphic set-systems of weight n with no singletons.
Original entry on oeis.org
1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0
Non-isomorphic representatives of the a(6) = 12 set-systems:
{{1,2,3,4,5,6}}
{{1,2},{3,4,5,6}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
The complement is counted by
A330053.
Cf.
A007716,
A034691,
A048143,
A049311,
A054921,
A116540,
A283877,
A293606,
A293607,
A304867,
A305999,
A305854-
A305857,
A306005-
A306008.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
A319558
The squarefree dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted without multiplicity. Then a(n) is the number of non-isomorphic multiset partitions of weight n whose squarefree dual is strict (no repeated blocks).
Original entry on oeis.org
1, 1, 3, 7, 21, 55, 169, 496, 1582, 5080, 17073
Offset: 0
Non-isomorphic representatives of the a(1) = 1, a(2) = 3, and a(3) = 7 multiset partitions:
1: {{1}}
2: {{1,1}}
{{1},{1}}
{{1},{2}}
3: {{1,1,1}}
{{1},{1,1}}
{{1},{2,2}}
{{2},{1,2}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
A318099
Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets.
Original entry on oeis.org
1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains:
1: {{1}}
2: {{1,1}}
{{1,2}}
{{1},{1}}
{{1},{2}}
3: {{1,1,1}}
{{1,2,3}}
{{1},{2,2}}
{{1},{2,3}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
Cf.
A000219,
A006126,
A007716,
A049311,
A059201,
A283877,
A306007,
A316980,
A316983,
A319558,
A319560,
A319616-
A319646,
A300913.
A319557
Number of non-isomorphic strict connected multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 5, 12, 30, 91, 256, 823, 2656, 9103, 31876, 116113, 432824, 1659692, 6508521, 26112327, 106927561, 446654187, 1900858001, 8236367607, 36306790636, 162724173883, 741105774720, 3428164417401, 16099059101049, 76722208278328, 370903316203353, 1818316254655097
Offset: 0
Non-isomorphic representatives of the a(4) = 12 strict connected multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{2},{1,2,2}}
{{3},{1,2,3}}
{{1,2},{2,2}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
Non-isomorphic representatives of the a(4) = 12 connected T_0 multiset partitions:
{{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{2},{1,2,2}}
{{1,1},{1,1}}
{{1,2},{2,2}}
{{1,3},{2,3}}
{{1},{1},{1,1}}
{{1},{2},{1,2}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
Comments