cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A348963 a(n) is multiplicative with a(p^e) = Sum_{d|e} p^(e-d).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 13, 1, 4, 1, 3, 1, 1, 1, 5, 6, 1, 10, 3, 1, 1, 1, 17, 1, 1, 1, 12, 1, 1, 1, 5, 1, 1, 1, 3, 4, 1, 1, 13, 8, 6, 1, 3, 1, 10, 1, 5, 1, 1, 1, 3, 1, 1, 4, 57, 1, 1, 1, 3, 1, 1, 1, 20, 1, 1, 6, 3, 1, 1, 1, 13, 37, 1, 1, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2021

Keywords

Comments

The function S_e(n) in Sándor (2006).
A number k is an exponential harmonic of type 2 (A348964) if and only if a(k) | k * A049419(k).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^(e - #) &]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

a(n) = 1 if and only if n is squarefree (A005117).

A357016 Decimal expansion of the asymptotic density of numbers whose exponents in their prime factorization are squares (A197680).

Original entry on oeis.org

6, 4, 1, 1, 1, 5, 1, 6, 1, 3, 5, 9, 3, 5, 1, 4, 3, 1, 4, 4, 7, 7, 0, 6, 1, 8, 3, 8, 4, 4, 2, 4, 4, 6, 0, 4, 1, 5, 9, 2, 0, 8, 9, 4, 0, 4, 0, 9, 2, 5, 7, 4, 6, 5, 2, 6, 8, 5, 5, 6, 0, 9, 4, 1, 0, 5, 3, 3, 0, 7, 2, 3, 9, 3, 8, 3, 2, 0, 4, 0, 9, 7, 3, 4, 5, 4, 2, 1, 1, 8, 4, 6, 7, 4, 0, 0, 6, 9, 3, 5, 6, 3, 6, 3, 5
Offset: 0

Views

Author

Amiram Eldar, Sep 09 2022

Keywords

Comments

Equivalently, the asymptotic density of numbers with an odd number of exponential divisors (A049419).

Examples

			0.64111516135935143144770618384424460415920894040925...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = m = 1000; em = 100; f[x_] := Log[1 + Sum[x^(e^2), {e, 2, em}] - Sum[x^(e^2 + 1), {e, 1, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]

Formula

Equals Product_{p prime} (1 + Sum_{k>=2} (c(k)-c(k-1))/p^k), where c(k) is the characteristic function of the squares (A010052).

A383863 The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a unitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 6, 3, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 12 2025

Keywords

Comments

First differs from A073184 at n = 64.
First differs from A383865 at n = 256.
The number of divisors d of n such that each is a unitary divisor of an exponential unitary divisor of n (see A361255).
Analogous to the number of (1+e)-divisors (A049599) as exponential unitary divisors (A361255, A278908) are analogous to exponential divisors (A322791, A049419).
The sum of these divisors is A383864(n).
Also, the number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a squarefree divisor of the p-adic valuation of n. The sum of these divisors is A383867(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^PrimeNu[e] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 1 + 1 << omega(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 1 + 2^A001221(e) = 1 + A034444(e).
a(n) <= A049599(n), with equality if and only if n is an exponentially squarefree number (A209061).

A357014 Numbers whose sum of exponential divisors (A051377) is odd.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149
Offset: 1

Views

Author

Amiram Eldar, Sep 09 2022

Keywords

Comments

Includes all the odd squarefree numbers (A056911). First differs from this sequence at n = 34.
Equivalently, the odd terms of A197680, i.e., odd numbers with an odd number of exponential divisors (A049419).
The asymptotic density of this sequence is 0.409797... (A357017).

Examples

			1 is a term since A051377(1) = 1 is odd.
3 is a term since A051377(3) = 3 is odd.
		

Crossrefs

Subsequence of A197680.
Subsequences: A056911, A357015.
Similar sequences: A000079 (numbers with an odd sum of unitary divisors), A028982 (numbers with an odd sum of divisors).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[150], OddQ[esigma[#]] &]

A382063 Numbers whose number of coreful divisors is divisible by their number of exponential divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2025

Keywords

Comments

First differs from A377019 at n = 55: A377019(55) = 64 is not a term of this sequence.
First differs from A344742 at n = 62: A344742(62) = 72 is not a term of this sequence.
All the cubefree numbers (A004709) are terms. The least term that is not cubefree is a(215) = 256 = 2^8. The cubefree numbers are the terms whose number of coreful divisors is equal to their number of exponential divisors.
All the exponentially refactorable numbers (A382065) are terms. The least term that is not in A382065 is a(362) = 432 = 2^4 * 3^3. The next terms that are not in A382065 are 648, 2000, 2160, 3024, 3240, 4536, 4752, 5000, ... .
For a number k whose prime factorization is Product_{i} p_i^e_i, a coreful divisor d of k has the prime factorization Product_{i} p_i^f_i with f_i >= 1 for all i. An exponential divisor of k is a coreful divisor with the additional condition that f_i | e_i for all i.
Numbers k such that A049419(k) | A005361(k).
The criterion according to which a number belongs to this sequence depends only on the prime signature of this number: if {e_1, e_2, ... } are the exponents in the prime factorization of k then k is a term if and only if A005361(k)/A049419(k) = Product_{i} e_i/A000005(e_i) is an integer.
A number k is a term if and only if the cubefull part of k, A360540(k), is a term. Therefore, the primitive terms of this sequence are the cubefull terms, A382064.
The asymptotic density of this sequence is Sum_{n>=1} f(A382064(n)) = 0.83697905945047..., where f(n) = (1/(zeta(3)*n)) * Product_{prime p|n} (p^2/(p^2+p+1)).

Examples

			2 is a term since A005361(2) = A049419(2) = 2, so 2 | 2.
256 is a term since A005361(256) = 8, A049419(256) = 4, and 4 | 8.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{e = FactorInteger[k][[;;, 2]]}, Divisible[Times @@ e, Times @@ DivisorSigma[0, e]]]; Select[Range[100], # == 1 || q[#] &]
  • PARI
    isok(k) = {my(e = factor(k)[, 2]); !(vecprod(e) % vecprod(apply(x -> numdiv(x), e)));}

A383865 The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 6, 3, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 12 2025

Keywords

Comments

First differs from A383863 at n = 256.
The number of divisors d of n such that each is a unitary divisor of an exponential infinitary divisor of n (see A383760).
Analogous to the number of (1+e)-divisors (A049599) as exponential infinitary divisors (A383760, A307848) are analogous to exponential divisors (A322791, A049419).
The sum of these divisors is A383866(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; ff[p_, e_] := d[e] + 1; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    d(n) = vecprod(apply(x -> 2^hammingweight(x), factor(n)[, 2]));
    a(n) = vecprod(apply(x -> 1 + d(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 1 + A037445(e).
a(n) <= A049599(n), with equality if and only if all the exponents in the prime factorization of n are in A036537.

A157488 a(1) = 1; for n > 1, a(n) = product of exponential divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 16, 27, 10, 11, 72, 13, 14, 15, 128, 17, 108, 19, 200, 21, 22, 23, 144, 125, 26, 81, 392, 29, 30, 31, 64, 33, 34, 35, 46656, 37, 38, 39, 400, 41, 42, 43, 968, 675, 46, 47, 3456, 343, 500, 51, 1352, 53, 324, 55, 784, 57, 58, 59, 1800, 61, 62, 1323, 4096
Offset: 1

Views

Author

Jaroslav Krizek, Mar 01 2009

Keywords

Comments

The exponential divisors of a number n = Product p(i)^e(i) are all numbers of the form Product p(i)^s(i) where s(i) divides e(i) for all i.
Not multiplicative: a(3)=3 (e-divisor 3^1), a(4)=8 (e-divisors 2^1 and 2^2), but a(12)=72 (e-divisors 3*2 and 3*2^2) <> a(3)*a(4). - R. J. Mathar, Apr 14 2011

Examples

			For n = 16 = 2^4 = the a(16) = 2^(A000203(4)) = 2^7 = 128. e-divisors of number 16 is 2, 4, 16, their product is 128.
		

Crossrefs

Programs

  • Magma
    [ &*[ d: d in Divisors(n) | forall(t) { p: p in P | v gt 0 and e mod v eq 0 where v is Valuation(d, p) where e is Valuation(n, p) } where P is PrimeDivisors(n) ]: n in [2..64] ]; // Klaus Brockhaus, May 26 2009
  • Mathematica
    f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); a[n_] :=(Times @@ (f @@@ (fct = FactorInteger[n])))^(Times @@ DivisorSigma[0, Last /@ fct]); Array[a, 100] (* Amiram Eldar, Jun 03 2020 *)

Formula

a(1) = 1, a(p) = p, a(p*q) = p*q, a(p*q...*z) = pq...z, a(p^k) = p^(A000203(k)), for p, q, ..., z distinct primes and k > 1 an integer.
From Amiram Eldar, Jun 03 2020: (Start)
If n = Product_{i} p_i^e_i then a(n) = Product_{i} p_i^(sigma(e_i) * d_exp(n) / d(e_i)), where d_exp(n) = Product_{i} d(e_i) is the number of exponential divisors of n (A049419), d(e) and sigma(e) are the number of divisors (A000005) of e and their sum (A000203).
a(n) <= A007955(n) with equality if and only if n is noncomposite. (End)

Extensions

a(1) = 1 from N. J. A. Sloane, Mar 02 2009
a(60) corrected by Klaus Brockhaus, May 26 2009

A160097 Number of non-exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 6, 1, 3, 2, 4, 1, 7, 1, 4, 3, 3, 3, 5, 1, 3, 3, 6, 1, 7, 1, 4, 4, 3, 1, 7, 1, 4, 3, 4, 1, 6, 3, 6, 3, 3, 1, 10, 1, 3, 4, 3, 3, 7, 1, 4, 3, 7, 1, 8, 1, 3, 4, 4, 3, 7, 1, 7, 2, 3, 1, 10, 3, 3, 3, 6, 1, 10, 3, 4, 3, 3, 3, 10, 1, 4, 4, 5
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2009

Keywords

Comments

The non-exponential divisors d|n of a number n = Product_i p(i)^e(i) are divisors d not of the form Product_i p(i)^s(i), s(i)|e(i) for all i.

Examples

			a(8) = 2 because 1 and 2^2 are non-exponential divisors of 8 = 2^3. 2^2 is a non-exponential divisor because 2^2 = 4 divides 8, but the exponent 2 = s(1) does not divide the exponent 3 = e(1).
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := DivisorSigma[0, e]; a[1] = 1; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; Array[a, 100] (* Amiram Eldar, Oct 26 2021 *)
  • PARI
    A049419(n) = { my(f = factor(n), m = 1); for(k=1, #f~, m *= numdiv(f[k, 2])); m; } \\ After Jovovic's formula for A049419.
    A160097(n) = if(1==n,n,(numdiv(n) - A049419(n))); \\ Antti Karttunen, May 25 2017

Formula

a(n) = A000005(n) - A049419(n) for n >= 2.
a(1) = 1, a(p) = 1, a(p*q) = 3, a(p*q*...*z) = 2^k - 1, where the indices are p=primes (A000040), p*q = product of two distinct primes (A006881), and generally p*q*...*z = product of k (k > 0) distinct primes (A120944).
a(p^k) = k + 1 - A000005(k), where p are primes (A000040), p^k are prime powers A000961 (n>1), k = natural numbers (A000027).
a(p^q) = q - 1, where p and q are primes (A000040), and p^q = prime powers of primes (A053810).
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*A001620 - A327837 - 1). - Amiram Eldar, Feb 03 2025

Extensions

Edited by R. J. Mathar, May 08 2009

A335385 The number of tri-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

A divisor d of k is tri-unitary if the greatest common bi-unitary divisor of d and k/d is 1.
Differs from A037445 at n = 32, 96, 128, 160, 224, ...

Examples

			a(4) = 2 since 4 has 2 tri-unitary divisors, 1 and 4. 2 is not a tri-unitary divisor of 4 since the greatest common bi-unitary divisor of 2 and 4/2 = 2 is 2 and not 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 3 || x == 6, 4, 2), factor(n)[, 2])); \\ Amiram Eldar, Dec 18 2023

Formula

Multiplicative with a(p^e) = 4 if e = 3 or 6, and a(p^e) = 2 otherwise.

A348962 Exponential harmonic numbers of type 1 (A348961) that are not squarefree.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 675, 684, 828, 1044, 1116, 1260, 1332, 1350, 1476, 1548, 1692, 1800, 1908, 1936, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4572, 4716
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2021

Keywords

Comments

Sándor (2006) proved that all the squarefree numbers are exponential harmonic numbers of type 1.

Examples

			36 = 2^2 * 3^2 is a term since it is not squarefree, A051377(36) = 72, 36 * A049419(36) = 36 * 4 = 144, so A051377(36) | 36 * A049419(36).
		

Crossrefs

Intersection of A013929 and A348961.

Programs

  • Mathematica
    f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^# &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[5000], ! SquareFreeQ[#] && ehQ[#] &]
Previous Showing 31-40 of 54 results. Next