cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A291601 Composite integers k such that 2^d == 2^(k/d) (mod k) for all d|k.

Original entry on oeis.org

341, 1105, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 13981, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 68101, 80581, 83333, 85489, 88357, 90751, 104653, 123251, 129889
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2017

Keywords

Comments

Such k must be odd.
For d=1, we have 2^k == 2 (mod k), implying that k is a Fermat pseudoprime (A001567).
Every Super-Poulet number belongs to this sequence.

Crossrefs

Subsequence of A001567.
Supersequence of A050217, their set difference is given by A291602.
Cf. A291602.

Programs

  • Maple
    filter:= proc(n) local D,d;
      if isprime(n) then return false fi;
      D:= sort(convert(numtheory:-divisors(n),list));
      for d in D while d^2 < n do
        if 2 &^ d - 2 &^(n/d) mod n <> 0 then return false fi
      od:
      true
    end proc:
    select(filter, [seq(i,i=3..2*10^5,2)]); # Robert Israel, Aug 28 2017
  • Mathematica
    filterQ[n_] := CompositeQ[n] && AllTrue[Divisors[n], PowerMod[2, #, n] == PowerMod[2, n/#, n]&];
    Select[Range[1, 10^6, 2], filterQ] (* Jean-François Alcover, Jun 18 2020 *)
  • PARI
    is(k) = {if(k == 1 || !(k%2) || isprime(k), return(0)); fordiv(k, d, if(d^2 <= k && Mod(2, k)^d != Mod(2, k)^(k/d), return(0))); 1;} \\ Amiram Eldar, Apr 22 2024

A333130 Numbers that are super pseudoprimes to both bases 2 and 3.

Original entry on oeis.org

2701, 18721, 31621, 49141, 83333, 90751, 104653, 226801, 282133, 653333, 665281, 721801, 873181, 1373653, 1530787, 1537381, 1584133, 1690501, 1755001, 1987021, 2008597, 2035153, 2284453, 2746589, 2944261, 3059101, 3116107, 3363121, 3375041, 3375487, 4082653, 4314967
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

The first term that has more than 2 prime factors is a(1067) = A333131(1) = 11500521553.
The first term that is also a Carmichael number is a(1131) = 13079177569.

Examples

			2701 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are all primes: 37 and 73.
		

Crossrefs

Intersection of A050217 and A328662.
Subsequence of A001567, A005935, A052155 and A153513.

Programs

  • Mathematica
    pspQ[n_] := CompositeQ[n] && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; Select[Range[10^6], pspQ]

A333131 Super pseudoprimes to both bases 2 and 3 (A333130) with more than two prime factors (counted with multiplicity).

Original entry on oeis.org

11500521553, 13079177569, 52474339009, 168003672409, 229352039821, 280792563977, 318289021201, 428178002569, 918660756421, 2015841188197, 2367478228501, 2544457029601, 2639665216117, 3023595814801, 3457449931321, 3712164285421, 4348114583017, 6046196043229
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

Up to 2^64 all the 1085 terms are nonsquarefree, 2 terms have 4 prime factors: a(163) = 18362297383286473 = 3037 * 6073 * 9109 * 109297 and a(651) = 2587580959818925201 = 18121 * 36241 * 54361 * 72481, and no term have more than 4 prime factors.

Examples

			11500521553 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are either primes (937, 1873, 6553) or Fermat pseudoprimes to both bases 2 and 3 (1755001, 6140161, 12273769, 11500521553).
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PrimeOmega[n] > 2 && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; seq = {}; Do[If[pspQ[n], AppendTo[seq, n]], {n, 1, 6*10^10}]; seq

A276733 Composite numbers n such that 2^lpf(n) == 2 (mod n), where lpf(n) = A020639(n).

Original entry on oeis.org

341, 1247, 1387, 2047, 2701, 3277, 3683, 4033, 4369, 4681, 5461, 5963, 7957, 8321, 9017, 9211, 10261, 13747, 14351, 14491, 15709, 17593, 18721, 19951, 20191, 23377, 24929, 25351, 29041, 31417, 31609, 31621, 33227, 35333, 37901, 42799, 45761, 46513, 49141, 49601, 49981
Offset: 1

Views

Author

Thomas Ordowski, Sep 16 2016

Keywords

Comments

Super-Poulet numbers A050217 is a subsequence.
From Robert Israel, Sep 16 2016: (Start)
If p is a Wieferich prime (A001220), p^2 is in this sequence.
If p is a non-Wieferich prime, there are terms of the sequence divisible by p iff p < A006530(2^p-2). Is the latter true for all primes p except 2,3,5,7 and 13? (End)

Crossrefs

Programs

  • Maple
    filter:= n -> not isprime(n) and 2 &^ min(numtheory:-factorset(n)) - 2 mod n = 0:
    select(filter, [seq(i,i=3..100000,2)]); # Robert Israel, Sep 16 2016
  • PARI
    lista(nn) = forcomposite(n=2, nn, if (Mod(2, n)^factor(n)[1,1] == Mod(2, n), print1(n, ", "));); \\ Michel Marcus, Sep 16 2016

Extensions

More terms from Michel Marcus, Sep 16 2016

A291617 Numbers p_1*p_2*...*p_k such that (2^p_1-1)*(2^p_2-1)*...*(2^p_k-1) is a Poulet number (A001567), where p_i are primes and k >= 2.

Original entry on oeis.org

230, 341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31323, 31417, 31609, 31621, 35333, 38193, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Aug 28 2017

Keywords

Comments

Rotkiewicz (1965) proved that (2^p-1)*(2^q-1) is a Poulet number if and only if p*q is a Poulet number, where p,q are distinct primes. It follows that this sequence contains all nonsquare terms in A214305.
Generally, the sequence includes all squarefree super-Poulet numbers.
The terms n = 230, 31323, 38193, ... are not in A050217. Are there infinitely many such terms?

Examples

			The number n = 341 = 11*31 is a term, because m = (2^11-1)*(2^31-1) = 4395899025409 is a Poulet number.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[10^4], CompositeQ@ # && SquareFreeQ@ # &], ! PrimeQ[#] && PowerMod[2, (# - 1), #] == 1 &@ Apply[Times, Map[2^# - 1 &, FactorInteger[#][[All, 1]] ]] &] (* Michael De Vlieger, Aug 30 2017 *)
  • PARI
    { is_A291617(n) = my(p,m); if(isprime(n),return(0)); p=factor(n); m=prod(i=1,matsize(p)[1], (2^p[i,1]-1)^p[i,2]); Mod(2,m)^m==2; }

A306487 Poulet numbers which are not super-Poulet numbers.

Original entry on oeis.org

561, 645, 1105, 1729, 1905, 2465, 2821, 4371, 6601, 8481, 8911, 10585, 11305, 12801, 13741, 13981, 15841, 16705, 18705, 23001, 25761, 29341, 30121, 30889, 33153, 34945, 39865, 41041, 41665, 46657, 52633, 55245, 57421, 62745, 63973, 68101, 72885, 74665, 75361
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2019

Keywords

Comments

Subsequence of A080747 from which this differs for the first time at n=78, with A080747(78) = 294409, a term not present here.
Is this sequence infinite?
According to Sierpinski there are infinitely many Poulet numbers which are not super-Poulet numbers. But his definition of Poulet numbers includes the even pseudoprimes to base 2 (A006935), and the proof is based on the infinitude of this sequence and that super-Poulet numbers are never even.

Examples

			561 is in the sequence because 2^561 % 561 == 2 but 33|561 and 2^33 % 33 = 8 <> 2. - _David A. Corneth_, Feb 28 2019
		

References

  • W. Sierpinski, Elementary Theory of Numbers, ed. A. Schinzel, North-Holland Mathematical Library (2nd ed.), Amsterdam: North Holland, 1988, Chapter V, p. 234, Exercise 1.

Crossrefs

Cf. A215672 (differs from a(13) = 11305 on, which is not in A215672).

Programs

  • Mathematica
    Select[Select[Range[3, 100000, 2], !PrimeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &], Union[PowerMod[2, Rest[Divisors[#]], #]] != {2}& ]
  • PARI
    is_A001567(n) = {Mod(2, n)^(n-1)==1 && !isprime(n) && n>1}; \\ From A001567 by M. F. Hasler
    is_A050217(n) = if(isprime(n), 0, fordiv(n, d, if(Mod(2, d)^d!=2, return(0))); (n>1)); \\ After Charles R Greathouse IV's Aug 27 2016 PARI-program in A050217.
    is_A306487(n) = (is_A001567(n) && !is_A050217(n)); \\ (Probably could be reduced to a simpler program). - Antti Karttunen, Feb 28 2019
    
  • PARI
    is(n) = {if(isprime(n) || n < 2 || n%2 == 0, return(0)); if(Mod(2, n)^n!=2, return(0) , d = divisors(n); for(i = 1, #d-1, if(Mod(2, d[i])^d[i]!=2, return(1) ) ) ); 0 } \\ David A. Corneth, Feb 28 2019

A337715 Numbers that are the product of two distinct odd numbers x*y such that 2^x (mod y) = 2^y (mod x) = 2.

Original entry on oeis.org

341, 525, 651, 765, 1155, 1387, 1683, 1935, 2047, 2701, 3277, 3751, 4033, 4165, 4305, 4369, 4455, 4681, 5461, 5525, 5715, 6025, 6643, 7161, 7239, 7957, 8265, 8321, 8925, 9471, 9605, 10261, 10571, 10965, 12103, 12325, 13113, 13747, 13981, 14491, 15709, 16275, 16485
Offset: 1

Views

Author

Bernard Schott, Sep 16 2020

Keywords

Comments

Equivalently, terms of A176970 that are not square of odd primes. Every square of odd prime p^2 is a term of A176970, because by Fermat's little theorem, for p prime, then 2^p = 2 (mod p).
The super-Poulet numbers (A050217) form a subsequence with 341, 1387, 2047, 2701, ... (see example).

Examples

			For 341 = 11 * 31 that is a super-Poulet:
   2^11 (mod 31) = 2^31 (mod 11) = 2, hence 341 is a term;
For 525 = 3 * 5^2 * 7 = 15 * 35 = 21 * 25:
   2^15 (mod 35) = 2^35 (mod 15) = 8, but
   2^21 (mod 25) = 2^25 (mod 21) = 2, hence, 525 is a term.
		

Crossrefs

Subsequence of A176970.
A050217 (super-Poulet) is a subsequence.

Programs

  • Maple
    test := proc(n) local d, q; if n::odd then for d in NumberTheory:-Divisors(n)
    do q := iquo(n, d); if q > d and 2 &^ d mod q = 2 and 2 &^ q mod d = 2 then return true fi od fi; false end: select(test, [$(1..10000)]); # Peter Luschny, Sep 17 2020
  • Mathematica
    okQ[x_, y_] := PowerMod[2, x, y] == PowerMod[2, y, x] == 2 && !PrimeQ[Sqrt[x*y]];
    nn = 20000;
    Union[Reap[Do[If[x*y < nn && okQ[x, y], Sow[x*y]], {x, 1, nn/3, 2}, {y, x, nn/3, 2}]][[2, 1]]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A176970 *)
  • PARI
    isok(n) = {if ((n % 2), fordiv(n, d, if ((d > n/d) && (lift(Mod(2, d)^(n/d)) == 2) && (lift(Mod(2, n/d)^d) == 2), return(1));););} \\ Michel Marcus, Sep 17 2020

Extensions

More terms from Amiram Eldar, Sep 16 2020

A367228 Products of two consecutive Fermat numbers: a(n) = A000215(n) * A000215(n+1).

Original entry on oeis.org

15, 85, 4369, 16843009, 281479271743489, 79228162532711081671548469249, 6277101735386680764176071790128604879584176795969512275969
Offset: 0

Views

Author

Amiram Eldar, Nov 11 2023

Keywords

Comments

a(7) has 116 digits and is too large to include in the data section.
Szymiczek (1966) proved that a(n) is a super-Poulet number (A050217) for all n >= 2. All the composite Fermat numbers (A281576) are also super-Poulet numbers.

References

  • Michal Krížek, Florian Luca and Lawrence Somer, 17 Lectures on Fermat Numbers, Springer-Verlag, N.Y., 2001, p. 142.

Crossrefs

Programs

  • Mathematica
    f[n_] := 2^(2^n) + 1; a[n_] := f[n] * f[n + 1]; Array[a, 7, 0]
  • PARI
    f(n) = 2^(2^n) + 1;
    a(n) = f(n) * f(n+1);

Formula

a(n) = (2^(2^n) + 1) * (2^(2^(n+1)) + 1).
Previous Showing 11-18 of 18 results.