A291601
Composite integers k such that 2^d == 2^(k/d) (mod k) for all d|k.
Original entry on oeis.org
341, 1105, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 13981, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 68101, 80581, 83333, 85489, 88357, 90751, 104653, 123251, 129889
Offset: 1
-
filter:= proc(n) local D,d;
if isprime(n) then return false fi;
D:= sort(convert(numtheory:-divisors(n),list));
for d in D while d^2 < n do
if 2 &^ d - 2 &^(n/d) mod n <> 0 then return false fi
od:
true
end proc:
select(filter, [seq(i,i=3..2*10^5,2)]); # Robert Israel, Aug 28 2017
-
filterQ[n_] := CompositeQ[n] && AllTrue[Divisors[n], PowerMod[2, #, n] == PowerMod[2, n/#, n]&];
Select[Range[1, 10^6, 2], filterQ] (* Jean-François Alcover, Jun 18 2020 *)
-
is(k) = {if(k == 1 || !(k%2) || isprime(k), return(0)); fordiv(k, d, if(d^2 <= k && Mod(2, k)^d != Mod(2, k)^(k/d), return(0))); 1;} \\ Amiram Eldar, Apr 22 2024
A333130
Numbers that are super pseudoprimes to both bases 2 and 3.
Original entry on oeis.org
2701, 18721, 31621, 49141, 83333, 90751, 104653, 226801, 282133, 653333, 665281, 721801, 873181, 1373653, 1530787, 1537381, 1584133, 1690501, 1755001, 1987021, 2008597, 2035153, 2284453, 2746589, 2944261, 3059101, 3116107, 3363121, 3375041, 3375487, 4082653, 4314967
Offset: 1
2701 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are all primes: 37 and 73.
-
pspQ[n_] := CompositeQ[n] && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; Select[Range[10^6], pspQ]
A333131
Super pseudoprimes to both bases 2 and 3 (A333130) with more than two prime factors (counted with multiplicity).
Original entry on oeis.org
11500521553, 13079177569, 52474339009, 168003672409, 229352039821, 280792563977, 318289021201, 428178002569, 918660756421, 2015841188197, 2367478228501, 2544457029601, 2639665216117, 3023595814801, 3457449931321, 3712164285421, 4348114583017, 6046196043229
Offset: 1
11500521553 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are either primes (937, 1873, 6553) or Fermat pseudoprimes to both bases 2 and 3 (1755001, 6140161, 12273769, 11500521553).
-
pspQ[n_] := PrimeOmega[n] > 2 && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; seq = {}; Do[If[pspQ[n], AppendTo[seq, n]], {n, 1, 6*10^10}]; seq
A276733
Composite numbers n such that 2^lpf(n) == 2 (mod n), where lpf(n) = A020639(n).
Original entry on oeis.org
341, 1247, 1387, 2047, 2701, 3277, 3683, 4033, 4369, 4681, 5461, 5963, 7957, 8321, 9017, 9211, 10261, 13747, 14351, 14491, 15709, 17593, 18721, 19951, 20191, 23377, 24929, 25351, 29041, 31417, 31609, 31621, 33227, 35333, 37901, 42799, 45761, 46513, 49141, 49601, 49981
Offset: 1
-
filter:= n -> not isprime(n) and 2 &^ min(numtheory:-factorset(n)) - 2 mod n = 0:
select(filter, [seq(i,i=3..100000,2)]); # Robert Israel, Sep 16 2016
-
lista(nn) = forcomposite(n=2, nn, if (Mod(2, n)^factor(n)[1,1] == Mod(2, n), print1(n, ", "));); \\ Michel Marcus, Sep 16 2016
A291617
Numbers p_1*p_2*...*p_k such that (2^p_1-1)*(2^p_2-1)*...*(2^p_k-1) is a Poulet number (A001567), where p_i are primes and k >= 2.
Original entry on oeis.org
230, 341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31323, 31417, 31609, 31621, 35333, 38193, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489
Offset: 1
The number n = 341 = 11*31 is a term, because m = (2^11-1)*(2^31-1) = 4395899025409 is a Poulet number.
-
Select[Select[Range[10^4], CompositeQ@ # && SquareFreeQ@ # &], ! PrimeQ[#] && PowerMod[2, (# - 1), #] == 1 &@ Apply[Times, Map[2^# - 1 &, FactorInteger[#][[All, 1]] ]] &] (* Michael De Vlieger, Aug 30 2017 *)
-
{ is_A291617(n) = my(p,m); if(isprime(n),return(0)); p=factor(n); m=prod(i=1,matsize(p)[1], (2^p[i,1]-1)^p[i,2]); Mod(2,m)^m==2; }
A306487
Poulet numbers which are not super-Poulet numbers.
Original entry on oeis.org
561, 645, 1105, 1729, 1905, 2465, 2821, 4371, 6601, 8481, 8911, 10585, 11305, 12801, 13741, 13981, 15841, 16705, 18705, 23001, 25761, 29341, 30121, 30889, 33153, 34945, 39865, 41041, 41665, 46657, 52633, 55245, 57421, 62745, 63973, 68101, 72885, 74665, 75361
Offset: 1
561 is in the sequence because 2^561 % 561 == 2 but 33|561 and 2^33 % 33 = 8 <> 2. - _David A. Corneth_, Feb 28 2019
- W. Sierpinski, Elementary Theory of Numbers, ed. A. Schinzel, North-Holland Mathematical Library (2nd ed.), Amsterdam: North Holland, 1988, Chapter V, p. 234, Exercise 1.
-
Select[Select[Range[3, 100000, 2], !PrimeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &], Union[PowerMod[2, Rest[Divisors[#]], #]] != {2}& ]
-
is_A001567(n) = {Mod(2, n)^(n-1)==1 && !isprime(n) && n>1}; \\ From A001567 by M. F. Hasler
is_A050217(n) = if(isprime(n), 0, fordiv(n, d, if(Mod(2, d)^d!=2, return(0))); (n>1)); \\ After Charles R Greathouse IV's Aug 27 2016 PARI-program in A050217.
is_A306487(n) = (is_A001567(n) && !is_A050217(n)); \\ (Probably could be reduced to a simpler program). - Antti Karttunen, Feb 28 2019
-
is(n) = {if(isprime(n) || n < 2 || n%2 == 0, return(0)); if(Mod(2, n)^n!=2, return(0) , d = divisors(n); for(i = 1, #d-1, if(Mod(2, d[i])^d[i]!=2, return(1) ) ) ); 0 } \\ David A. Corneth, Feb 28 2019
A337715
Numbers that are the product of two distinct odd numbers x*y such that 2^x (mod y) = 2^y (mod x) = 2.
Original entry on oeis.org
341, 525, 651, 765, 1155, 1387, 1683, 1935, 2047, 2701, 3277, 3751, 4033, 4165, 4305, 4369, 4455, 4681, 5461, 5525, 5715, 6025, 6643, 7161, 7239, 7957, 8265, 8321, 8925, 9471, 9605, 10261, 10571, 10965, 12103, 12325, 13113, 13747, 13981, 14491, 15709, 16275, 16485
Offset: 1
For 341 = 11 * 31 that is a super-Poulet:
2^11 (mod 31) = 2^31 (mod 11) = 2, hence 341 is a term;
For 525 = 3 * 5^2 * 7 = 15 * 35 = 21 * 25:
2^15 (mod 35) = 2^35 (mod 15) = 8, but
2^21 (mod 25) = 2^25 (mod 21) = 2, hence, 525 is a term.
A050217 (super-Poulet) is a subsequence.
-
test := proc(n) local d, q; if n::odd then for d in NumberTheory:-Divisors(n)
do q := iquo(n, d); if q > d and 2 &^ d mod q = 2 and 2 &^ q mod d = 2 then return true fi od fi; false end: select(test, [$(1..10000)]); # Peter Luschny, Sep 17 2020
-
okQ[x_, y_] := PowerMod[2, x, y] == PowerMod[2, y, x] == 2 && !PrimeQ[Sqrt[x*y]];
nn = 20000;
Union[Reap[Do[If[x*y < nn && okQ[x, y], Sow[x*y]], {x, 1, nn/3, 2}, {y, x, nn/3, 2}]][[2, 1]]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A176970 *)
-
isok(n) = {if ((n % 2), fordiv(n, d, if ((d > n/d) && (lift(Mod(2, d)^(n/d)) == 2) && (lift(Mod(2, n/d)^d) == 2), return(1));););} \\ Michel Marcus, Sep 17 2020
A367228
Products of two consecutive Fermat numbers: a(n) = A000215(n) * A000215(n+1).
Original entry on oeis.org
15, 85, 4369, 16843009, 281479271743489, 79228162532711081671548469249, 6277101735386680764176071790128604879584176795969512275969
Offset: 0
- Michal Krížek, Florian Luca and Lawrence Somer, 17 Lectures on Fermat Numbers, Springer-Verlag, N.Y., 2001, p. 142.
- Amiram Eldar, Table of n, a(n) for n = 0..10
- Andrzej Rotkiewicz, On pseudoprimes having special forms and a solution of K. Szymiczek's problem, Acta Mathematica Universitatis Ostraviensis, Vol. 13, No. 1 (2005), pp. 57-71.
- Kazimierz Szymiczek, Note on Fermat numbers, Elemente der Mathematik, Vol. 21, No. 3 (1966), p. 59.
-
f[n_] := 2^(2^n) + 1; a[n_] := f[n] * f[n + 1]; Array[a, 7, 0]
-
f(n) = 2^(2^n) + 1;
a(n) = f(n) * f(n+1);
Comments