cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-79 of 79 results.

A371455 Numbers k such that if we take the binary indices of each prime index of k we get an antichain of sets.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

In an antichain of sets, no edge is a proper subset of any other.

Examples

			The prime indices of 65 are {3,6} with binary indices {{1,2},{2,3}} so 65 is in the sequence.
The prime indices of 255 are {2,3,7} with binary indices {{2},{1,2},{1,2,3}} so 255 is not in the sequence.
		

Crossrefs

Contains all powers of primes A000961.
An opposite version is A087086, carry-connected case A371294.
For prime indices of prime indices we have A316476, carry-connected A329559.
These antichains are counted by A325109.
For binary indices of binary indices we have A326704, carry-conn. A326750.
The carry-connected case is A371445, counted by A371446.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A050320 counts set multipartitions of prime indices, see also A318360.
A070939 gives length of binary expansion.
A089259 counts set multipartitions of integer partitions.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A116540 counts normal set multipartitions.
A302478 ranks set multipartitions, cf. A073576.
A325118 ranks carry-connected partitions, counted by A325098.
A371451 counts carry-connected components of binary indices.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],stableQ[bix/@prix[#],SubsetQ]&]

A376679 Number of strict integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2024

Keywords

Examples

			The a(3456) = 28 factorizations are:
  (4*8*9*12)  (4*9*96)    (36*96)   (3456)
              (8*9*48)    (4*864)
              (4*12*72)   (48*72)
              (4*16*54)   (54*64)
              (4*18*48)   (8*432)
              (4*24*36)   (9*384)
              (4*27*32)   (12*288)
              (4*8*108)   (16*216)
              (8*12*36)   (18*192)
              (8*16*27)   (24*144)
              (8*18*24)   (27*128)
              (9*12*32)   (32*108)
              (9*16*24)
              (12*16*18)
		

Crossrefs

Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050326, non-strict A050320.
For prime-powers we have A050361, non-strict A000688.
For nonprime numbers we have A050372, non-strict A050370.
The version for partitions is A256012, non-strict A114374.
For perfect-powers we have A323090, non-strict A294068.
The non-strict version is A376657.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • JavaScript
    function nextNonSquareFree(val){val+=1;for(let i=2;i*i<=val;i+=1){if(val%i==0&&val%(i*i)==0){return val}}return nextNonSquareFree(val)}function strictFactorCount(val,maxFactor){if(val==1){return 1}let sum=0;while(maxFactorDominic McCarty, Oct 19 2024
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&NoneTrue[#,SquareFreeQ]&]],{n,100}] (* corrected by Gus Wiseman, Jun 27 2025 *)

A382304 MM-numbers of multiset partitions into sets with a common sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 143, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2025

Keywords

Comments

Also products of prime numbers of squarefree index with a common sum of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Set partitions of this type are counted by A035470.
Twice-partitions of this type are counted by A279788.
For just strict blocks we have A302478.
For just a common sum we have A326534, distinct sums A326535.
Factorizations of this type are counted by A382080.
For distinct instead of equal sums we have A382201.
For constant instead of strict blocks we have A382215.
Normal multiset partitions of this type are counted by A382429.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A058891 counts set-systems, covering A003465, connected A323818.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@UnsameQ@@@prix/@prix[#]&]

Formula

Equals A302478 /\ A326534.

A376657 Number of integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2024

Keywords

Examples

			The a(n) factorizations for n = 16, 64, 72, 144, 192, 256, 288:
  (16)   (64)     (72)    (144)    (192)     (256)      (288)
  (4*4)  (8*8)    (8*9)   (4*36)   (4*48)    (4*64)     (4*72)
         (4*16)   (4*18)  (8*18)   (8*24)    (8*32)     (8*36)
         (4*4*4)          (9*16)   (12*16)   (16*16)    (9*32)
                          (12*12)  (4*4*12)  (4*8*8)    (12*24)
                          (4*4*9)            (4*4*16)   (16*18)
                                             (4*4*4*4)  (4*8*9)
                                                        (4*4*18)
		

Crossrefs

For prime-powers we have A000688.
Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050320, strict A050326.
For nonprime numbers we have A050370.
The version for partitions is A114374.
For perfect-powers we have A294068.
For non-perfect-powers we have A303707.
For non-prime-powers we have A322452.
The strict case is A376679.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],NoneTrue[SquareFreeQ]]],{n,100}]

A383310 Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 9, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 19, 3, 3, 3, 24, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 46, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 37, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 46, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2025

Keywords

Examples

			The a(36) = 24 choices:
  {{2,2,3,3}}  {{2},{2,3,3}}  {{2},{3},{2,3}}
  {{2,2,9}}    {{3},{2,2,3}}  {{2},{3},{6}}
  {{2,3,6}}    {{2,2},{3,3}}
  {{2,18}}     {{2},{2,9}}
  {{3,3,4}}    {{9},{2,2}}
  {{3,12}}     {{2},{3,6}}
  {{4,9}}      {{3},{2,6}}
  {{6,6}}      {{6},{2,3}}
  {{36}}       {{2},{18}}
               {{3},{3,4}}
               {{4},{3,3}}
               {{3},{12}}
               {{4},{9}}
		

Crossrefs

The case of a unique choice (positions of 1) is A008578.
This is the strict case of A050336.
For distinct strict blocks we have A050345.
For integer partitions we have A261049, strict case of A001970.
For strict blocks that are not necessarily distinct we have A296119.
Twice-partitions of this type are counted by A296122.
For normal multisets we have A317776, strict case of A255906.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A281113 counts twice-factorizations, strict A296121, see A296118, A296120.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y],UnsameQ@@#&]],{y,facs[n]}],{n,30}]

A340017 Products of squarefree semiprimes that are not products of distinct squarefree semiprimes.

Original entry on oeis.org

36, 100, 196, 216, 225, 360, 441, 484, 504, 540, 600, 676, 756, 792, 936, 1000, 1089, 1156, 1176, 1188, 1224, 1225, 1296, 1350, 1368, 1400, 1404, 1444, 1500, 1521, 1656, 1836, 1960, 2052, 2088, 2116, 2160, 2200, 2232, 2250, 2484, 2600, 2601, 2646, 2664, 2744
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2020

Keywords

Comments

Of course, every number is a product of squarefree numbers (A050320).
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
All terms have even Omega (A001222, A028260).

Examples

			The sequence of terms together with their prime indices begins:
      36: {1,1,2,2}        1000: {1,1,1,3,3,3}
     100: {1,1,3,3}        1089: {2,2,5,5}
     196: {1,1,4,4}        1156: {1,1,7,7}
     216: {1,1,1,2,2,2}    1176: {1,1,1,2,4,4}
     225: {2,2,3,3}        1188: {1,1,2,2,2,5}
     360: {1,1,1,2,2,3}    1224: {1,1,1,2,2,7}
     441: {2,2,4,4}        1225: {3,3,4,4}
     484: {1,1,5,5}        1296: {1,1,1,1,2,2,2,2}
     504: {1,1,1,2,2,4}    1350: {1,2,2,2,3,3}
     540: {1,1,2,2,2,3}    1368: {1,1,1,2,2,8}
     600: {1,1,1,2,3,3}    1400: {1,1,1,3,3,4}
     676: {1,1,6,6}        1404: {1,1,2,2,2,6}
     756: {1,1,2,2,2,4}    1444: {1,1,8,8}
     792: {1,1,1,2,2,5}    1500: {1,1,2,3,3,3}
     936: {1,1,1,2,2,6}    1521: {2,2,6,6}
For example, a complete list of all factorizations of 7560 into squarefree semiprimes is:
  7560 = (6*6*6*35) = (6*6*10*21) = (6*6*14*15),
but since none of these is strict, 7560 is in the sequence.
		

Crossrefs

See link for additional cross references.
The distinct prime shadows (under A181819) of these terms are A339842.
Factorizations into squarefree semiprimes are counted by A320656.
Products of squarefree semiprimes that are not products of distinct semiprimes are A320893.
Factorizations into distinct squarefree semiprimes are A339661.
For the next four lines, we list numbers with even Omega (A028260).
- A320891 cannot be factored into squarefree semiprimes.
- A320894 cannot be factored into distinct squarefree semiprimes.
- A320911 can be factored into squarefree semiprimes.
- A339561 can be factored into distinct squarefree semiprimes.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A030229 lists squarefree numbers with even Omega.
A050320 counts factorizations into squarefree numbers.
A050326 counts factorizations into distinct squarefree numbers.
A181819 is the Heinz number of the prime signature of n (prime shadow).
A320656 counts factorizations into squarefree semiprimes.
A339560 can be partitioned into distinct strict pairs.

Programs

  • Mathematica
    strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Select[Range[1000],Select[strr[#],UnsameQ@@#&]=={}&&strr[#]!={}&]

Formula

Equals A320894 /\ A320911.
Numbers n such that A320656(n) > 0 but A339661(n) = 0.

A383311 Number of ways to choose a set multipartition (multiset of sets) of a factorization of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 16, 2, 3, 4, 7, 1, 12, 1, 12, 3, 3, 3, 20, 1, 3, 3, 16, 1, 12, 1, 7, 7, 3, 1, 33, 2, 7, 3, 7, 1, 16, 3, 16, 3, 3, 1, 34, 1, 3, 7, 22, 3, 12, 1, 7, 3, 12, 1, 49, 1, 3, 7, 7, 3, 12, 1, 33, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 28 2025

Keywords

Comments

First differs from A296119 at a(36) = 20, A296119(36) = 21.

Examples

			The a(36) = 20 choices are:
  {{2,3,6}}  {{2,3},{2,3}}  {{2},{3},{2,3}}  {{2},{2},{3},{3}}
  {{2,18}}   {{2},{2,9}}    {{2},{2},{9}}
  {{3,12}}   {{2},{3,6}}    {{2},{3},{6}}
  {{4,9}}    {{3},{2,6}}    {{3},{3},{4}}
  {{36}}     {{6},{2,3}}
             {{2},{18}}
             {{3},{3,4}}
             {{3},{12}}
             {{4},{9}}
             {{6},{6}}
		

Crossrefs

The case of a unique choice (positions of 1) is A008578.
For multisets of multisets we have A050336.
For sets of sets we have A050345.
For normal multisets we have A116540, strong A330783.
For integer partitions instead of factorizations we have A089259.
Twice-partitions of this type are counted by A270995.
For sets of multisets we have A383310 (distinct products A296118).
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A281113 counts twice-factorizations, see A294788, A296120, A296121.
A302478 gives MM-numbers of set multipartitions.
A302494 gives MM-numbers of sets of sets.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y], And@@UnsameQ@@@#&]], {y,facs[n]}],{n,100}]

A306268 Number of ways to choose a strict factorization into squarefree factors of each factor in a strict factorization of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 3, 1, 0, 0, 3, 1, 3, 1, 3, 3, 0, 1, 3, 1, 3, 3, 3, 1, 1, 0, 3, 0, 3, 1, 12, 1, 0, 3, 3, 3, 5, 1, 3, 3, 1, 1, 12, 1, 3, 3, 3, 1, 0, 0, 3, 3, 3, 1, 1, 3, 1, 3, 3, 1, 19, 1, 3, 3, 0, 3, 12, 1, 3, 3, 12, 1, 4, 1, 3, 3, 3, 3, 12, 1, 0, 0, 3, 1, 19, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2019

Keywords

Examples

			The a(216) = 8 factorizations:
   (2*3)*(2*3*6)    (2*6)*(3*6)
  (2)*(2*3)*(3*6)   (6)*(2*3*6)
  (2)*(3)*(2*3*6)  (2)*(6)*(3*6)
  (3)*(2*3)*(2*6)  (3)*(6)*(2*6)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Join@@Table[Tuples[Select[facs[#],And[UnsameQ@@#,And@@SquareFreeQ/@#]&]&/@fac],{fac,Select[facs[n],UnsameQ@@#&]}]],{n,60}]

A321188 Number of set systems with no singletons whose multiset union is row n of A305936 (a multiset whose multiplicities are the prime indices of n).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 11, 0, 0, 0, 4, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(36) = 4 set systems with no singletons whose multiset union is {1,1,2,2,3,4}:
  {{1,2},{1,2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[hyp[nrmptn[n]]],{n,30}]
Previous Showing 71-79 of 79 results.