cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 254 results. Next

A241124 Smallest k such that the factorization of k! over distinct terms of A050376 contains at least n nonprime terms of A050376.

Original entry on oeis.org

4, 6, 8, 12, 14, 15, 16, 24, 25, 26, 30, 32, 46, 46, 48, 48, 62, 63, 63, 64, 64, 87, 91, 95, 96, 96, 96, 114, 114, 122, 124, 125, 128, 129, 160, 161, 176, 177, 178, 178, 188, 189, 190, 192, 192, 192, 194, 225, 226, 226, 240, 252, 254, 255, 256, 288, 288, 289, 290, 320
Offset: 1

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			For k=2,3,4,5,6, we have the following factorizations of k! over distinct terms of A050376: 2!=2, 3!=2*3, 4!=2*3*4, 5!=2*3*4*5, 6!=5*9*16.
Therefore, a(1)=4, a(2)=6.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DigitCount[n, 2, 1] - Mod[n, 2]; nb[n_] := Total@(f/@ FactorInteger[n][[;;,2]]); a[n_] := (k=1; While[nb[k!] < n, k++]; k); Array[a, 60] (* Amiram Eldar, Dec 16 2018 from the PARI code *)
  • PARI
    nb(n) = {my(f = factor(n)); sum(k=1, #f~, hammingweight(f[k,2]) - (f[k,2] % 2));}
    a(n) = {my(k=1); while (nb(k!) < n, k++); k;} \\ Michel Marcus, Dec 16 2018

Extensions

More terms from Michel Marcus, Dec 16 2018

A241139 Number of nonprimes in factorization of n! over distinct terms of A050376.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 7, 7, 4, 4, 5, 5, 6, 6, 8, 9, 10, 10, 9, 9, 11, 11, 12, 12, 10, 9, 8, 8, 9, 10, 11, 11, 12, 12, 11, 12, 14, 14, 16, 15, 15, 15, 13, 13, 14, 14, 14, 14, 16, 16, 16, 16, 17, 19, 21, 21, 18, 18, 19, 16, 14, 14, 16, 16, 17
Offset: 2

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			Factorization of 4! over distinct terms of A050376 is 4! = 2*3*4. This factorization contains only one A050376-nonprime. So a(4)=1.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Mathematica
    b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], ?(# == 1 &)]) // Flatten; a[n] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; Length[Select[(b /@ v) // Flatten, # > 1 &]]]; Array[a, 73, 2]  (* Amiram Eldar, Sep 17 2019 *)
  • PARI
    a(n)={my(f=factor(n!)[,2]); sum(i=1, #f~, hammingweight(f[i]>>1))} \\ Andrew Howroyd, Sep 17 2019

Formula

a(n) = A177329(n) - A055460(n).

Extensions

More terms from Peter J. C. Moses, Apr 17 2014

A366247 The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366243.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

First differs from A101436 at n = 32.

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e>3, s(e\4)) + e%4\2 \\ after Charles R Greathouse IV at A139352
    a(n) = vecsum(apply(s, factor(n)[, 2]));

Formula

Additive with a(p^e) = A139352(e).
a(n) = A064547(n) - A366246(n).
a(n) = A064547(A366245(n)).
a(n) >= 0, with equality if and only if n is in A366242.
a(n) <= A064547(n), with equality if and only if n is in A366243.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} f(1/p) = 0.39310573826635831710..., where f(x) = Sum_{k>=0} (x^(2*4^k)/(1+x^(2*4^k))).

A186945 The smallest integer x > 0 such that the number of terms of A050376 in (x/2,x] equals n.

Original entry on oeis.org

2, 3, 5, 13, 17, 25, 31, 49, 61, 71, 73, 81, 103, 109, 113, 131, 139, 157, 173, 181, 191, 193, 199, 239, 241, 257, 269, 271, 283, 289, 293, 313, 353, 361, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 571, 577, 599, 601, 607, 613, 619, 643, 647
Offset: 1

Views

Author

Vladimir Shevelev, Aug 30 2013

Keywords

Comments

The sequence is an analog of Labos primes (A080359) in Fermi-Dirac arithmetic, since in this arithmetic terms of A050376 play role of primes (see comments in A050376).

Crossrefs

Formula

a(n) <= A228520(n).

Extensions

More terms from Peter J. C. Moses

A187042 Numbers the expansion of which over distinct terms of A050376 contains the same number of primes and perfect squares.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 32, 44, 45, 48, 50, 52, 63, 68, 75, 76, 80, 92, 98, 99, 112, 116, 117, 124, 125, 147, 148, 153, 162, 164, 171, 172, 175, 176, 188, 207, 208, 212, 216, 236, 242, 243, 244, 245, 261, 268, 272, 275, 279, 284, 292, 304, 316, 325, 332, 333, 338
Offset: 1

Views

Author

Vladimir Shevelev, Mar 02 2011

Keywords

Comments

The sequence does not contain squarefree numbers or perfect squares.
Initially the sequence matches A378494 (the intersection of A000379 and A026424). The first differences are the absence here of 120 and 168 and the inclusion here of 216. - Peter Munn, Jul 13 2024 (edited by Paolo Xausa, Nov 29 2024).

Examples

			147 and 216 are in the sequence, since their expansions over distinct terms of A050376 are 3*49 and 2*3*4*9 respectively. Thus the expansion of 147 contains one prime and one perfect square, while the expansion of 216 contains two primes and two perfect squares.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Total @ (d = IntegerDigits[Last /@ FactorInteger[n], 2])[[;; , -1]] == Total @ Flatten @d / 2; Select[Range[350], aQ] (* Amiram Eldar, Oct 01 2019 *)

Extensions

a(28)=153 inserted and more terms added by Amiram Eldar, Oct 01 2019

A229064 Lesser of Fermi-Dirac twin primes: both a(n)(>=5) and a(n)+2 are in A050376.

Original entry on oeis.org

5, 7, 9, 11, 17, 23, 29, 41, 47, 59, 71, 79, 81, 101, 107, 137, 149, 167, 179, 191, 197, 227, 239, 269, 281, 311, 347, 359, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 839, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1367
Offset: 1

Views

Author

Vladimir Shevelev, Sep 17 2013

Keywords

Comments

Terms of A050376 play the role of primes in Fermi-Dirac arithmetic. Therefore, if q and q+2 are consecutive terms of A050376, then we call them twin primes in Fermi-Dirac arithmetic. The sequence lists lessers of them.
There exist conjecturally only 5 Fermat primes F, such that both F-1 and F are in A050376. If we add pair (3,4), then we obtain exactly 6 such pairs as an analog of the unique pair (2,3) in usual arithmetic, which is not considered as a pair of twin primes.
For n>4, numbers n such that n and n+2 are of the form p^(2^k), where p is prime and k >= 0. - Ralf Stephan, Sep 23 2013
If a(n) is not the lesser of twin primes (A001359), then either a(n) or a(n)+2 is a perfect square. For example, a(4)=9 and a(7)=23. Note that the first case is possible only if a(n) = 3^(2^m), m>=1. - Vladimir Shevelev, Jun 27 2014

Examples

			2, 3 are not in the sequence, although pairs (2,4) and (3,5) are in A050376. Indeed, 2 and 4 as well as 3 and 5 are not consecutive terms of A050376.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Cf. A001359.

Programs

  • Mathematica
    inA050376Q[1]:=False; inA050376Q[n_] := Length[#] == 1 && (Union[Rest[IntegerDigits[#[[1]][[2]], 2]]] == {0} || #[[1]][[2]] == 1)&[FactorInteger[n]]; nextA050376[n_] := NestWhile[#+1&, n+1, !inA050376Q[#] == True&]; Select[Range[1500], inA050376Q[#] && (nextA050376[#]-#) == 2&] (* Peter J. C. Moses, Sep 19 2013 *)
  • PARI
    isok(n)={my(e1=isprimepower(n), e2=isprimepower(n+2)); n >= 5 && e1 && e2 && !bitand(e1,e1-1) && !bitand(e2,e2-1)} \\ Andrew Howroyd, Oct 16 2024

A268392 a(n) = A268385(A050376(n)).

Original entry on oeis.org

2, 3, 8, 5, 7, 27, 11, 13, 32, 17, 19, 23, 125, 29, 31, 37, 41, 43, 47, 343, 53, 59, 61, 67, 71, 73, 79, 243, 83, 89, 97, 101, 103, 107, 109, 113, 1331, 127, 131, 137, 139, 149, 151, 157, 163, 167, 2197, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 32768, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2016

Keywords

Crossrefs

Cf. A268391 (same sequence sorted into ascending order).

Programs

Formula

a(n) = A268385(A050376(n)).

A322823 a(n) = 0 if n is 1 or a Fermi-Dirac prime (A050376), otherwise a(n) = 1 + a(A300840(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 2, 3, 0, 2, 0, 1, 2, 1, 4, 3, 0, 1, 2, 3, 0, 2, 0, 3, 4, 1, 0, 2, 0, 1, 2, 3, 0, 2, 4, 3, 2, 1, 0, 3, 0, 1, 5, 3, 4, 2, 0, 3, 2, 4, 0, 3, 0, 1, 2, 3, 5, 2, 0, 4, 0, 1, 0, 3, 4, 1, 2, 3, 0, 4, 5, 3, 2, 1, 4, 2, 0, 1, 6, 3, 0, 2, 0, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Comments

For n > 1, a(n) gives the number of edges needed to traverse from n to reach the leftmost branch (where the terms of A050376 are located) in the binary tree illustrated in A052330.

Crossrefs

Programs

  • PARI
    up_to = 10000;
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1,oo,if(A302777(n), i++; v[i] = n); if(i == up_to,return(v))); };
    v050376 = A050376list(up_to);
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300840(n) = A052330(A052331(n)>>1);
    A322823(n) = if((1==n)||(1==A302777(n)),0,1+A322823(A300840(n)));

Formula

a(1) = 0; for n > 1, if A302777(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(A300840(n)).

A330688 Record values in A050377, number of ways to factor n into "Fermi-Dirac primes" (A050376).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 40, 56, 60, 80, 84, 104, 112, 120, 144, 160, 168, 184, 200, 208, 216, 224, 240, 260, 288, 320, 360, 368, 400, 416, 432, 460, 480, 520, 576, 600, 624, 640, 720, 736, 800, 864, 920, 960, 1040, 1104, 1120, 1152, 1200, 1440, 1456, 1472, 1480, 1600, 1840, 2016, 2080, 2400, 2576, 2880, 2960, 3360
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Programs

  • PARI
    upto_e = 101; \\ 101 --> 211 terms
    A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819
    v018819 = vector(upto_e,n,A018819(n));
    A050377(n) = factorback(apply(e -> v018819[e], factor(n)[, 2]));
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A330688list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, m=0, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,#v025487,if((t=A050377(v025487[i]))>m, listput(lista,t); m=t)); Vec(lista); };
    v330688 = A330688list(upto_e);
    A330688(n) = v330688[n];

Formula

a(n) = A050377(A330687(n)).

A330690 Number of ways to factor A108951(n) into "Fermi-Dirac primes" (A050376), where A108951 is fully multiplicative with a(prime(k)) = k-th primorial.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 4, 4, 1, 4, 1, 2, 4, 2, 1, 4, 8, 2, 4, 2, 1, 4, 1, 4, 4, 2, 8, 8, 1, 2, 4, 4, 1, 4, 1, 2, 4, 2, 1, 4, 16, 8, 4, 2, 1, 8, 8, 4, 4, 2, 1, 8, 1, 2, 4, 6, 8, 4, 1, 2, 4, 8, 1, 8, 1, 2, 8, 2, 16, 4, 1, 4, 16, 2, 1, 8, 8, 2, 4, 4, 1, 8, 16, 2, 4, 2, 8, 6, 1, 16, 4, 16, 1, 4, 1, 4, 8
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Comments

a(64) = 6 is the first term which is not a power of 2.

Crossrefs

Programs

Formula

a(n) = A050377(A108951(n)).
a(n) = A050378(A329901(n)).
Previous Showing 31-40 of 254 results. Next