cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A050769 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 2 skipped primes.

Original entry on oeis.org

10, 12, 14, 15, 21, 44, 90, 135, 210, 252, 294, 384, 468, 504, 513, 686, 704, 720, 768, 832, 864, 972, 1155, 1368, 1701, 1890, 2176, 2184, 2352, 2400, 2880, 3080, 3400, 3640, 3888, 4032, 4536, 4725, 5200, 6174, 6384, 8750, 9548, 10350, 10400, 10500
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			a(6) = 44 + (2 + 2 + 11) = ending prime 59. Between 44 and 59 there are 2 primes: 47 and 53.
		

Crossrefs

Programs

  • Mathematica
    ckpgQ[n_]:=Module[{c=n+Total[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]]},CompositeQ[n]&&PrimeQ[c]&&PrimePi[c]-PrimePi[n] == 3]; Select[Range[11000],ckpgQ] (* Harvey P. Dale, Nov 29 2014 *)

A050772 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 5 skipped primes.

Original entry on oeis.org

18, 24, 25, 46, 57, 161, 203, 209, 288, 319, 323, 391, 736, 798, 837, 858, 928, 930, 1035, 1088, 1089, 1218, 1300, 1376, 1690, 2254, 2418, 2478, 2673, 2842, 2871, 3045, 3220, 3325, 3458, 3510, 3588, 4186, 4508, 4617, 4824, 5054, 5180, 5248, 5472, 6069
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			18 is a term because 18 + (2+3+3) = 26 + (2+13) = ending prime 41. Between 18 and 41 one finds 5 primes 19, 23, 29, 31 and 37.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local r, s, t;
      if isprime(n) then return false fi;
      t:= 0: s:= n;
      do
       r:= s;
       s:= s + add(p[1]*p[2],p=ifactors(s)[2]);
       t:= t + numtheory:-pi(s-1) - numtheory:-pi(r);
       if isprime(s) then return t=5 fi;
       if t > 5 then return false fi;
      od;
    end proc:
    select(filter, [$2..10000]); # Robert Israel, May 08 2020
  • Mathematica
    ok[n_] := CompositeQ[n] && Block[{k=n, p = NextPrime[n, 6]}, While[k < p, k += Total[ Times @@@ FactorInteger[k]]]; k == p]; Select[Range@ 6069, ok] (* Giovanni Resta, May 08 2020 *)

Extensions

Offset changed to 1 by Robert Israel, May 08 2020

A050776 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 9 skipped primes.

Original entry on oeis.org

30, 42, 99, 174, 188, 212, 216, 295, 329, 348, 371, 620, 627, 629, 649, 851, 901, 925, 957, 1081, 1189, 1248, 1353, 1363, 1696, 1830, 1880, 2133, 2173, 2491, 2664, 3660, 3843, 4020, 4420, 5056, 5688, 6327, 6700, 7540, 7626, 7808, 7888, 7900, 8295, 8778
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			a(3)=99 + (3+3+11) = 116 + (2+2+29) = ending prime 149. Between 99 and 149 one finds 9 primes 101, 103, 107, 109, 113, 127, 131, 137 and 139.
		

Crossrefs

Extensions

Offset corrected by Sean A. Irvine, Aug 18 2021

A050779 Primes that are not ending primes after the iterated procedure of 'composite added to the sum of its prime factors reaches a prime'.

Original entry on oeis.org

2, 3, 5, 7, 13, 37, 43, 61, 67, 73, 97, 101, 137, 139, 157, 163, 173, 181, 193, 197, 199, 211, 223, 233, 257, 277, 281, 283, 307, 347, 349, 353, 367, 379, 389, 397, 409, 421, 433, 457, 463, 487, 499, 547, 557, 563, 577, 601, 613, 617, 641, 643, 661, 673, 677
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=NestWhile[#+Total[Times@@@FactorInteger[#]]&,n,!PrimeQ[#]&]; t={}; Do[If[!PrimeQ[n],AppendTo[t,a[n]]],{n,4,nn=678}]; Complement[Prime[Range[PrimePi[nn]]],Select[Union[t],#Jayanta Basu, Jun 01 2013 *)

A281995 Squarefree numbers that, when added to the sum of their prime factors, remain squarefree.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 114, 115, 118
Offset: 1

Views

Author

K. D. Bajpai, Feb 04 2017

Keywords

Examples

			a(6) = 10 = 2*5 that is squarefree. 10 + 2 + 5 = 17 = 1*17, which is also squarefree.
a(14) = 22 = 2*11 that is squarefree. 22 + 2 + 11 = 35 = 5*7, which is also squarefree.
a(219) = 434 = 2*7*31 that is squarefree. 434 + 2 + 7 + 31 = 474 = 2*3*79, which is also squarefree.
		

Crossrefs

Programs

  • Maple
    filter:= n -> numtheory:-issqrfree(n) and numtheory:-issqrfree(n+convert(numtheory:-factorset(n),`+`)):
    select(filter, [$1..1000]); # Robert Israel, Feb 15 2017
  • Mathematica
    Select[Range[500], SquareFreeQ[#] && SquareFreeQ[# + Total[Times @@@ FactorInteger[#]]] &]
  • PARI
    isok(n) = issquarefree(n) && issquarefree(n + vecsum(factor(n)[, 1])); \\ Michel Marcus, Feb 05 2017

A358002 Numbers k such that one of k-A001414(k) and k+A001414(k) is a prime and the other is the square of a prime.

Original entry on oeis.org

135, 936, 1431, 3510, 5005, 5106, 5278, 9471, 10648, 10659, 22126, 26724, 27420, 27840, 37014, 37149, 39321, 40311, 54730, 59031, 62830, 87186, 124914, 128616, 129411, 133494, 187705, 196078, 208285, 209451, 212695, 309885, 322191, 325465, 375513, 410515, 412476, 433041, 459844, 466620, 595833, 622083
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 23 2022

Keywords

Comments

The Generalized Bunyakovsky conjecture implies that there are, for example, infinitely many primes q == 11 (mod 26) such that p = (q^2+9)/26 and 28*p+9 are prime, and then 27*p is in the sequence.

Examples

			a(4) = 3510 is a term because 3510 = 2*3^3*5*13 so A001414(3510) = 2+3*3+5+13 = 29 and 3510-29 = 3481 = 29^2 is the square of a prime, while 3510+29 = 3539 is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t,s,x,y;
       s:= add(t[1]*t[2], t = ifactors(n)[2]);
       x:= s+n; y:= n-s;
       if issqr(x) then isprime(sqrt(x)) and isprime(y)
       else issqr(y) and isprime(sqrt(y)) and isprime(x)
       fi
    end proc:
    select(filter, [$1..10^6]);

A050770 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 3 skipped primes.

Original entry on oeis.org

26, 33, 35, 55, 208, 297, 300, 351, 352, 420, 432, 441, 486, 660, 735, 910, 1000, 1140, 1225, 1452, 1584, 1715, 1938, 2016, 2250, 2548, 2816, 3003, 3724, 4056, 4180, 4455, 4459, 4600, 4736, 4845, 5280, 5625, 5746, 5888, 5915, 6422, 6475, 6864, 6916, 6930
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			a(2)=33 + (3+11) = ending prime 47. Between 33 and 47 one finds 3 primes 37, 41 and 43.
		

Crossrefs

A050771 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 4 skipped primes.

Original entry on oeis.org

8, 9, 34, 38, 51, 65, 68, 85, 96, 116, 143, 224, 225, 304, 306, 416, 448, 544, 546, 570, 600, 621, 640, 714, 783, 810, 1020, 1134, 1197, 1254, 1280, 1408, 1521, 1540, 1666, 1716, 1806, 1900, 1953, 2088, 2646, 2760, 3159, 3185, 3255, 3392, 3920, 3968, 4176
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			a(2)=9 + (3+3) = 15 + (3+5) = ending prime 23. Between 9 and 23 one finds 4 primes 11, 13, 17 and 19.
		

Crossrefs

A050773 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 6 skipped primes.

Original entry on oeis.org

4, 22, 54, 93, 111, 145, 155, 185, 221, 231, 377, 450, 667, 688, 992, 1122, 1161, 1428, 1638, 1995, 2144, 2220, 2624, 2820, 2838, 3627, 3774, 3876, 4225, 4761, 5106, 5434, 5590, 5676, 5850, 6188, 6216, 6405, 6734, 8364, 8554, 9196, 9471, 9558, 10660
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			a(2)=22 + (2+11) = 35 + (5+7) = ending prime 47. Between 22 and 47 one finds 6 primes 23, 29, 31, 37, 41 and 43.
		

Crossrefs

Extensions

Offset corrected by Sean A. Irvine, Aug 18 2021

A050774 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 7 skipped primes.

Original entry on oeis.org

39, 40, 58, 78, 205, 272, 330, 341, 357, 437, 475, 476, 520, 533, 551, 616, 738, 833, 1105, 1184, 1274, 1984, 2262, 2312, 2652, 2964, 3008, 3010, 3198, 3444, 3776, 4386, 5530, 5831, 6020, 6204, 6360, 6768, 7056, 7380, 7420, 7930, 8322, 8835, 8844, 8991
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			a(1)=39 + (3+13) = 55 + (5+11) = ending prime 71. Between 39 and 71 one finds 7 primes 41, 43, 47, 53, 59, 61 and 67.
		

Crossrefs

Extensions

Offset corrected by Sean A. Irvine, Aug 18 2021
Previous Showing 21-30 of 35 results. Next