A135957 a(n) = smallest k such that Fibonacci(prime(k)) has exactly n prime factors.
1, 2, 8, 12, 25, 50, 96, 73, 164
Offset: 0
Extensions
Edited and extended by David Wasserman, Mar 26 2008
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(n) = {p = 2; while (omega(fibonacci(p)) != n, p = nextprime(p+1)); p;} \\ Michel Marcus, Nov 08 2013
k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Fibonacci[Prime[n]] - Prime[n]]], {n, 1, 100}]; k fpn[n_]:=Module[{prn=Prime[n],fib},fib=Fibonacci[prn];If[PrimeQ[fib], fib- prn,a]]; DeleteCases[Table[fpn[i],{i,100}],a] (* Harvey P. Dale, Mar 27 2012 *)
forprime(n=1,1000,if(isprime(fibonacci(n)),print1(fibonacci(n)-n,","))) \\ Edward Jiang, Nov 23 2013
k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Round[Fibonacci[Prime[n]]/Prime[n]]]], {n, 1, 100}]; k
17732 is in the sequence because floor(514229/29) = 17732, where 29 is the 10th prime number and 514229 = Fibonacci(29) is also a prime. - _Bruno Berselli_, Jul 10 2012
k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Floor[Fibonacci[Prime[n]]/Prime[n]]]], {n, 1, 100}]; k
k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Floor[Log[Fibonacci[Prime[n]]/Prime[n]]]]], {n, 1, 200}]; k
k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Round[Log[Fibonacci[Prime[n]]/Prime[n]]]]], {n, 1, 200}]; k
a(1) = 150 = 37+113 because A135953(1) = 4181 = 37*113. a(2) = 2974 = 557+2417 because A135953(2) = 1346269 = 557*2417.
k = {}; Do[If[ ! PrimeQ[Fibonacci[Prime[n]]], b = FactorInteger[Fibonacci[Prime[n]]]; c = Length[FactorInteger[b]]; If[c == 2, d = b[[1]][[1]] + b[[2]][[1]]; AppendTo[k, d]]], {n, 1, 50}]; k Total[Transpose[FactorInteger[#]][[1]]]&/@Select[Fibonacci[Prime[ Range[50]]], PrimeOmega[#]==2&] (* Harvey P. Dale, Feb 18 2012 *)
a = {}; k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Fibonacci[Prime[n]]]], {n, 1, 100}];Do[AppendTo[a, PrimePi[k[[n + 1]]] - PrimePi[k[[n]]]], {n, 1, 9}]; a
Comments