cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A135957 a(n) = smallest k such that Fibonacci(prime(k)) has exactly n prime factors.

Original entry on oeis.org

1, 2, 8, 12, 25, 50, 96, 73, 164
Offset: 0

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Crossrefs

Extensions

Edited and extended by David Wasserman, Mar 26 2008

A135958 a(n) = smallest prime p such that Fibonacci(p) has exactly n prime factors.

Original entry on oeis.org

2, 3, 19, 37, 97, 229, 503, 367, 971
Offset: 0

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Crossrefs

A135959 gives the Fibonacci numbers. Cf. A000045, A050937, A075737, A090819, A135957.

Programs

  • PARI
    a(n) = {p = 2; while (omega(fibonacci(p)) != n, p = nextprime(p+1)); p;} \\ Michel Marcus, Nov 08 2013

Formula

a(n) = prime(A135957(n)).

Extensions

Edited and extended by David Wasserman, Mar 26 2008

A134788 If Fibonacci(prime(k)) is prime, append Fibonacci(prime(k)) - prime(k) to the sequence.

Original entry on oeis.org

-1, 0, 6, 78, 220, 1580, 28634, 514200, 433494394, 2971215026, 99194853094755414, 1066340417491710595814572038, 19134702400093278081449423780, 475420437734698220747368027166749382927701417016557193662268716376935475882
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Fibonacci[Prime[n]] - Prime[n]]], {n, 1, 100}]; k
    fpn[n_]:=Module[{prn=Prime[n],fib},fib=Fibonacci[prn];If[PrimeQ[fib], fib- prn,a]]; DeleteCases[Table[fpn[i],{i,100}],a] (* Harvey P. Dale, Mar 27 2012 *)
  • PARI
    forprime(n=1,1000,if(isprime(fibonacci(n)),print1(fibonacci(n)-n,","))) \\ Edward Jiang, Nov 23 2013

A134789 a(n) = round(Fibonacci(prime(k))/prime(k)), where k = A119984(n).

Original entry on oeis.org

1, 1, 2, 8, 18, 94, 1246, 17732, 10081266, 63217342, 1195118711985006, 8140003186959622868813528, 139669360584622467747806014, 1324290912910022899017738237233285189213652972190967113265372469016533360
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Round[Fibonacci[Prime[n]]/Prime[n]]]], {n, 1, 100}]; k

A135959 a(n) = smallest Fibonacci number with prime index which has exactly n prime factors.

Original entry on oeis.org

1, 2, 4181, 24157817, 83621143489848422977, 322615043836854783580186309282650000354271239929
Offset: 0

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

a(6) has 105 digits.
a(7) = 22334640661774067356412331900038009953045351020683823507202893507476314037053.
Variant of A114722. [From R. J. Mathar, Oct 28 2008]

Crossrefs

Formula

a(n) = Fibonacci(A135958(n)).

Extensions

Edited by David Wasserman, Mar 26 2008

A134790 Floor(prime Fibonacci(Prime(k))/Prime(k)).

Original entry on oeis.org

0, 1, 1, 8, 17, 93, 1245, 17732, 10081265, 63217341, 1195118711985005, 8140003186959622868813528, 139669360584622467747806013, 1324290912910022899017738237233285189213652972190967113265372469016533360
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Examples

			17732 is in the sequence because floor(514229/29) = 17732, where 29 is the 10th prime number and 514229 = Fibonacci(29) is also a prime. - _Bruno Berselli_, Jul 10 2012
		

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Floor[Fibonacci[Prime[n]]/Prime[n]]]], {n, 1, 100}]; k

A134791 a(n) = floor(log(Fibonacci(prime(k))/prime(k))), where k = A119984(n).

Original entry on oeis.org

-1, 0, 0, 2, 2, 4, 7, 9, 16, 17, 34, 57, 60, 166, 200, 201, 209, 237, 266, 267, 1420, 2263, 2582, 4470, 4646, 6933, 12289, 14789, 17311, 18039, 24449, 39369, 50472, 62555, 71250, 96762, 191209, 208726, 283920, 285676, 290979, 448242, 505208, 618634, 787250, 867638
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Floor[Log[Fibonacci[Prime[n]]/Prime[n]]]]], {n, 1, 200}]; k

Extensions

a(21)-a(46) from Amiram Eldar, Oct 13 2024

A134792 a(n) = round(log(Fibonacci(prime(k))/prime(k))), where k = A119984(n).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 7, 10, 16, 18, 35, 57, 60, 166, 201, 201, 209, 238, 267, 268, 1421, 2263, 2583, 4471, 4647, 6934, 12289, 14789, 17312, 18039, 24450, 39370, 50472, 62555, 71250, 96762, 191210, 208727, 283921, 285676, 290980, 448242, 505208, 618634, 787251, 867638
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Round[Log[Fibonacci[Prime[n]]/Prime[n]]]]], {n, 1, 200}]; k

Extensions

a(21)-a(46) from Amiram Eldar, Oct 13 2024

A135969 Sum of the prime factors of A135953(n).

Original entry on oeis.org

150, 2974, 62158, 55946694, 2710261050, 555008010, 46165377746, 95396546, 92180471494910, 1665088321801550, 771601497990, 8242065051309594, 32530503217194, 272602401466814027806, 5568053048227732238014, 2811666624525811646469921614, 1966344318693363713266514
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

A subsequence of A135968.

Examples

			a(1) = 150 = 37+113 because A135953(1) = 4181 = 37*113.
a(2) = 2974 = 557+2417 because A135953(2) = 1346269 = 557*2417.
		

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[Fibonacci[Prime[n]]], b = FactorInteger[Fibonacci[Prime[n]]]; c = Length[FactorInteger[b]]; If[c == 2, d = b[[1]][[1]] + b[[2]][[1]]; AppendTo[k, d]]], {n, 1, 50}]; k
    Total[Transpose[FactorInteger[#]][[1]]]&/@Select[Fibonacci[Prime[ Range[50]]], PrimeOmega[#]==2&] (* Harvey P. Dale, Feb 18 2012 *)

Formula

a(n) = A008472(A135953(n)). - R. J. Mathar, Nov 26 2008

Extensions

Definition clarified by R. J. Mathar, Nov 26 2008
a(16)-a(17) from Amiram Eldar, Oct 23 2024

A134850 Number of primes between A075737(n) and A075737(n+1), including one bound.

Original entry on oeis.org

2, 3, 18, 27, 200, 2870, 39492, 22980943, 120106923, 2602986018837012
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Fibonacci[Prime[n]]]], {n, 1, 100}];Do[AppendTo[a, PrimePi[k[[n + 1]]] - PrimePi[k[[n]]]], {n, 1, 9}]; a

Extensions

Edited by N. J. A. Sloane, Oct 07 2008
a(10) using Kim Walisch's primecount, from Amiram Eldar, May 14 2023
Previous Showing 11-20 of 22 results. Next