cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A164293 Decimal expansion of the twin prime constant associated with the binary constant in A164292.

Original entry on oeis.org

1, 6, 4, 6, 8, 2, 3, 9, 0, 6, 3, 4, 5, 3, 8, 9, 3, 5, 3, 9, 6, 2, 3, 8, 1, 0, 9, 7, 7, 4, 7, 4, 0, 4, 4, 6, 9, 2, 6, 4, 3, 3, 6, 6, 1, 0, 2, 4, 3, 6, 3, 1, 7, 8, 4, 4, 4, 0, 7, 1, 7, 8, 1, 9, 9, 6, 6, 2, 2, 7, 9, 5, 3, 4, 9, 6, 2, 1, 5, 1, 7, 9, 3, 0, 5, 5, 0, 2, 9, 4, 7, 0, 7, 2, 7, 5, 6, 8, 6, 6, 1, 7, 6, 2, 6
Offset: 1

Views

Author

Carlos Alves, Aug 12 2009

Keywords

Comments

Twin prime constant decimals (A164292)_2 = 0.1646823906345389353962381...
Similar: prime constant decimals A051006 = 0.4146825098511116602481096...
If twin prime conjecture is false then this twin prime constant is rational! As a counterpart if it is not rational, the conjecture is true.
If the conjecture is proved by other means, it will remain to see if it is irrational or transcendental.

Crossrefs

A217054 Odd number version of the prime constant (A101264 interpreted as a binary number).

Original entry on oeis.org

9, 2, 8, 3, 1, 9, 5, 9, 1, 2, 5, 9, 9, 4, 0, 4, 1, 6, 0, 6, 8, 9, 1, 0, 8, 6, 7, 3, 1, 8, 4, 7, 3, 3, 0, 6, 8, 2, 9, 1, 3, 0, 6, 7, 6, 5, 6, 1, 0, 5, 5, 3, 6, 9, 7, 5, 7, 1, 1, 2, 3, 2, 9, 8, 4, 7, 4, 6, 3, 2, 5, 8, 3, 8, 2, 8, 3, 2, 2, 1, 3, 3, 5, 6, 2, 9, 8, 4, 1, 2, 6, 9, 7, 2, 5, 6, 1
Offset: 0

Views

Author

Alonso del Arte, Sep 25 2012

Keywords

Comments

The prime constant (A051006) is essentially a set of flags that tell us whether a given integer is prime. But since all even numbers (except 2) are composite, every other bit is guaranteed to be 0.
Depending on the algorithm for which this is used, it may be more efficient to store a set of flags for just the odd numbers (and handle 2 as a special case). Lehmer (1969) suggests using about 64 kilobytes for the storage of this "characteristic number."

Examples

			1/2 + 1/4 + 1/8 + 1/32 + 1/64 + ... = 0.928319591...
		

References

  • D. H. Lehmer, "Computer Technology Applied to the Theory of Numbers," from Studies in Number Theory, ed. William J. LeVeque. Englewood Cliffs, New Jersey: Prentice Hall (1969): 138.

Programs

  • Mathematica
    RealDigits[Sum[1/2^((Prime[k] - 1)/2), {k, 2, 1000}], 10, 100][[1]]
  • PARI
    s=0; forprime(p=3, default(realprecision)*log(100)\log(2)+9, s += 1.>>(p\2)); s \\ Charles R Greathouse IV, Sep 26 2012

Formula

sum(k = 1 .. infinity, chi(2k + 1)/2^k), where chi(n) is the characteristic function of the prime numbers (A010051).
sum(k = 2 .. infinity, 1/2^((p(k) - 1)/2)), where p(k) is the k-th prime number.

A262153 Decimal expansion of Sum_{p prime} 1/(2^p-1), a prime equivalent of the Erdős-Borwein constant.

Original entry on oeis.org

5, 1, 6, 9, 4, 2, 8, 1, 9, 8, 0, 5, 6, 4, 0, 3, 8, 4, 2, 4, 0, 5, 1, 6, 6, 0, 8, 4, 7, 9, 8, 5, 6, 2, 7, 7, 9, 7, 8, 5, 4, 6, 9, 4, 7, 9, 1, 3, 0, 9, 1, 2, 4, 1, 6, 5, 0, 2, 8, 0, 2, 4, 5, 8, 7, 1, 2, 3, 8, 0, 7, 5, 3, 4, 1, 1, 3, 6, 0, 3, 7, 7, 1, 9, 8, 1, 8, 0, 2, 8, 0, 5, 4, 0, 2, 5, 0, 8, 8, 2
Offset: 0

Views

Author

Jean-François Alcover, Sep 13 2015

Keywords

Comments

Erdős was interested in the question whether this constant is irrational. - Amiram Eldar, Apr 30 2020
Pratt gives a conditional proof that this constant is irrational. - Charles R Greathouse IV, Sep 26 2024

Examples

			0.51694281980564038424051660847985627797854694791309124165028...
		

References

  • Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A Tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.

Crossrefs

Programs

  • Mathematica
    digits = 100; m0 = 100; dm = 100; s[m_] := s[m] = N[Sum[1/(2^Prime[n]-1), {n, 1, m}], digits+10]; s[m = m0]; Print[{m, s[m]}]; s[m = m + dm]; While[ Print[{m, s[m]}]; RealDigits[ s[m], 10, digits+5] != RealDigits[ s[m - dm], 10, digits+5], m = m + dm]; RealDigits[ s[m], 10, digits] // First
  • PARI
    suminf(k=1, omega(k)/2^k) \\ Michel Marcus, Apr 30 2020
    
  • PARI
    s=0.; forprime(p=2,bitprecision(1.)+1,s+=1./(2^p-1)); s \\ Charles R Greathouse IV, Sep 26 2024

Formula

Equals Sum_{i>=1} 1/A001348(i). - R. J. Mathar, Feb 17 2016
Equals Sum_{k>=1} omega(k)/2^k, where omega(k) is the number of distinct primes dividing k (A001221). - Amiram Eldar, Apr 30 2020

A280609 Odd prime powers with prime exponents.

Original entry on oeis.org

9, 25, 27, 49, 121, 125, 169, 243, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 16807, 17161, 18769, 19321, 22201, 22801, 24389, 24649, 26569, 27889, 29791, 29929
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Intersection of A053810 and A061345.

Examples

			9 is in the sequence because 9 = 3^2;
25 is in the sequence because 25 = 5^2;
27 is in the sequence because 27 = 3^3, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A280609(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

a(n) = p^q, where p, q are primes and p > 2.
Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024

A332905 Decimal expansion of Sum_{p prime, k>=1} 1 / 2^(p^k).

Original entry on oeis.org

4, 8, 3, 0, 5, 7, 1, 8, 1, 1, 2, 5, 9, 0, 9, 5, 6, 4, 9, 3, 2, 1, 6, 9, 7, 9, 8, 5, 2, 5, 6, 0, 3, 8, 8, 4, 7, 9, 3, 2, 6, 0, 0, 7, 4, 3, 5, 4, 8, 9, 4, 9, 0, 6, 2, 8, 2, 6, 0, 8, 5, 6, 9, 9, 9, 1, 1, 3, 8, 6, 2, 6, 0, 5, 0, 6, 9, 3, 1, 1, 7, 1, 0, 3, 5, 5, 9, 2, 2, 2, 3, 4, 1, 7, 9, 5, 3, 6, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2020

Keywords

Comments

Prime power constant: binary expansion is the characteristic function of prime powers (A069513).

Examples

			0.48305718112590956493... = (0.0111101110...)_2.
                                |||| |||
                                2345 789
		

Crossrefs

A333392 a(0) = 1; thereafter a(n) = 2^(prime(n)-1) + Sum_{k=1..n} 2^(prime(n)-prime(k)).

Original entry on oeis.org

1, 3, 7, 29, 117, 1873, 7493, 119889, 479557, 7672913, 491066433, 1964265733, 125713006913, 2011408110609, 8045632442437, 128730119078993, 8238727621055553, 527278567747555393, 2109114270990221573, 134983313343374180673, 2159733013493986890769, 8638932053975947563077
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 18 2020

Keywords

Examples

			a(7) = 119889 (in base 10) = 11101010001010001 (in base 2).
                             ||| | |   | |   |
                             123 5 7  1113  17
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := 2^(Prime[n] - 1) + Sum[2^(Prime[n] - Prime[k]), {k, 1, n}]; Table[a[n], {n, 0, 21}]
  • PARI
    a(n) = if (n==0, 1, 2^(prime(n)-1) + sum(k=1, n, 2^(prime(n)-prime(k)))); \\ Michel Marcus, Mar 18 2020

Formula

a(n) = floor(c * 2^prime(n)) for n > 0, where c = 0.91468250985... = 1/2 + A051006.

A072812 Take the binary number P = 1.01101010001... which has an 1 in each decimal position that is a prime (e.g. 2,3,5,7...) and convert this number to base 10.

Original entry on oeis.org

1, 4, 1, 4, 6, 8, 2, 5, 0, 9, 8, 5, 1, 1, 1, 1, 6, 6, 0, 2, 4, 8, 1, 0, 9, 6, 2, 2, 1, 5, 4, 3, 0, 7, 7, 0, 8, 3, 6, 5, 7, 7, 4, 2, 3, 8, 1, 3, 7, 9, 1, 6, 9, 7, 7, 8, 6, 8, 2, 4, 5, 4, 1, 4, 4, 8, 8, 6, 4, 0, 9, 6, 0, 6, 1, 9, 3, 5, 7, 3, 3, 4, 1, 9, 6, 2, 9, 0, 0, 4, 8, 4, 2, 8, 4, 7, 5, 7, 7, 7, 9, 3, 9, 6, 1, 6
Offset: 1

Views

Author

Andre Neumann Kauffman (andrekff(AT)hotmail.com), Aug 13 2002

Keywords

Examples

			1.414682509851111660248109622154307708366...
		

Crossrefs

Essentially the same as A051006, which is the main entry.

Programs

  • Maple
    a := 1; for i from 2 to 1000 do if isprime(i) then a := a+10^(-i); end if; end do; b := evalf(a,100); evalf(convert(b,decimal,binary),40);

Extensions

More digits from Alois P. Heinz, Jan 28 2017

A103313 Positions of records in the continued fraction expansion of the prime constant.

Original entry on oeis.org

0, 1, 4, 5, 6, 20, 31, 54, 306, 356, 762, 3174, 20240, 22693, 35793, 58491, 81251, 206410, 228533, 3987683, 5635890
Offset: 0

Views

Author

Eric W. Weisstein, Jan 30 2005

Keywords

Crossrefs

Previous Showing 41-48 of 48 results.