A056163
Number of ordered antichains on an unlabeled n-set; labeled T_1-hypergraphs with n hyperedges.
Original entry on oeis.org
2, 3, 5, 11, 120, 191297
Offset: 0
a(1)=1+2=3; a(2)=1+3+1=5; a(3)=1+4+4+2=11; a(4)=1+5+10+19+25+30+30=120; a(5)=1+6+20+90+454+2206+8340+20580+38640+60480+60480=191297.
There are 11 ordered antichains on an unlabeled 3-set: 0, (0), ({1}), ({1,2}), ({1,2,3}), ({1},{2}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
A059090
Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0
1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
- Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
- Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.
A084871
Number of 4-multiantichains of an n-set.
Original entry on oeis.org
1, 2, 7, 41, 398, 6177, 128232, 2881531, 62769238, 1288737197, 25012685732, 463681018671, 8294783320578, 144410750517217, 2462999084589232, 41359616334934211, 686406989350511918, 11290725888842193237
Offset: 0
-
[(16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/4!, ", ")) \\ G. C. Greubel, Oct 08 2017
A084872
Number of 5-multiantichains of an n-set.
Original entry on oeis.org
1, 2, 8, 56, 726, 17938, 722680, 35955180, 1798971434, 83885891894, 3612380896332, 145277787750064, 5534505187364062, 202229611397865690, 7158136006402746464, 247316732670273773108, 8389241054998193347410
Offset: 0
-
[(32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n)/120: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n)/120, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n)/120, ", ")) \\ G. C. Greubel, Oct 08 2017
A084873
Number of 6-multiantichains of an n-set.
Original entry on oeis.org
1, 2, 9, 73, 1212, 44667, 3251186, 345094227, 39552733796, 4234657495267, 409948262617398, 36190736880911571, 2964860272283578040, 229165985114590010307, 16940021231116707830570
Offset: 0
-
Table[(1/6!)*(64^n - 30*48^n + 120*40^n + 60*36^n + 60*34^n - 12*33^n - 315*32^n - 720*30^n + 810*28^n + 120*27^n + 480*26^n + 360*25^n - 1080*24^n - 720*23^n - 240*22^n - 540*21^n + 3180*20^n + 750*19^n + 660*18^n + 90*17^n - 4535*16^n - 5420*15^n + 6750*14^n + 5400*13^n - 13620*12^n + 900*11^n + 16440*10^n + 2740*9^n - 12165*8^n + 4110*7^n - 25650*6^n + 25650*5^n + 10474*4^n - 20948*3^n + 7560*2^n), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
A084874
Number of (k,m,n)-antichains of multisets with k=3 and m=2.
Original entry on oeis.org
0, 0, 9, 162, 2025, 21870, 219429, 2112642, 19847025, 183642390, 1682955549, 15327821322, 139038251625, 1257873017310, 11360034454869, 102475388237202, 923689006041825, 8321664254958630, 74945757885541389, 674816499677616282
Offset: 0
-
[(9^n - 2*6^n + 3^n)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(9^n - 2*6^n + 3^n)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
LinearRecurrence[{18,-99,162},{0,0,9},20] (* Harvey P. Dale, Oct 01 2023 *)
-
for(n=0,50, print1((9^n - 2*6^n + 3^n)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
A084875
Number of (k,m,n)-antichains of multisets with k=3 and m=3.
Original entry on oeis.org
0, 0, 1, 350, 24025, 1061570, 38306701, 1238697950, 37547263825, 1093418309690, 31035659056501, 866306577308150, 23915774118612025, 655397866616830610, 17872808187862527901, 485794481046271815950, 13175146525408965630625
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..695
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for linear recurrences with constant coefficients, signature (77,-2277,32895,-242514,854388,-1102248).
-
[(27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n)/6: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
LinearRecurrence[{77,-2277,32895,-242514,854388,-1102248},{0,0,1,350,24025,1061570},20] (* Harvey P. Dale, May 29 2025 *)
-
for(n=0,50, print1((27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
A084876
Number of (k,m,n)-antichains of multisets with k=3 and m=4.
Original entry on oeis.org
0, 0, 0, 310, 159300, 32389900, 4469327850, 503689260970, 50466655894200, 4701945998612200, 418104908350395750, 36055756736065208230, 3046399249526576159700, 253883533322134812268900, 20963248884482293139928450, 1720141562616331422239725090
Offset: 0
-
[(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n)/24, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
A084877
Number of (k,m,n)-antichains of multisets with k=3 and m=5.
Original entry on oeis.org
0, 0, 0, 114, 649850, 678772108, 377819587984, 153135104560046, 51758494975477206, 15644366957608679376, 4400899140179858419388, 1180668574169021790713938, 306827161657039584492179842
Offset: 0
-
Table[(1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 10*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 120*54^n + 240*42^n + 40*36^n - 240*31^n + 35*27^n + 60*26^n - 210*18^n + 210*14^n + 50*9^n - 100*6^n + 24*3^n), {n, 0, 1000}] (* G. C. Greubel, Oct 08 2017 *)
A084878
Number of (k,m,n)-antichains of multisets with k=3 and m=6.
Original entry on oeis.org
0, 0, 0, 15, 1729366, 10340309701, 24380294253318, 36539301527565851, 42407896071362952494, 42091311943805278602897, 37781049596189171124466966, 31727275407315883994852626087
Offset: 0
Comments