cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A056163 Number of ordered antichains on an unlabeled n-set; labeled T_1-hypergraphs with n hyperedges.

Original entry on oeis.org

2, 3, 5, 11, 120, 191297
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 31 2000

Keywords

Comments

A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

Examples

			a(1)=1+2=3; a(2)=1+3+1=5; a(3)=1+4+4+2=11; a(4)=1+5+10+19+25+30+30=120; a(5)=1+6+20+90+454+2206+8340+20580+38640+60480+60480=191297.
There are 11 ordered antichains on an unlabeled 3-set: 0, (0), ({1}), ({1,2}), ({1,2,3}), ({1},{2}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A000372 for (unordered) antichains on a labeled n-set, A056005, A056069-A056071, A056073, A056046-A056049, A056052, A056101, A056104, A051112-A051118.

Formula

a(n)=Sum_{k=0..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains on an unlabeled n-set.

A059090 Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 28 2000

Keywords

Comments

An antichain is called intersecting (or proper) antichain if every two members have a nonempty intersection. Row sums give the number of intersecting antichains on a labeled n-set or n-variable Boolean functions in the Post class F(7,2) or self-dual monotone Boolean functions of n+1 variables. Cf. A001206.

Examples

			1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
		

References

  • Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.

Crossrefs

Formula

T(n, 0)=1, T(n, 1)=2^n-1, T(n, 2)=A032263(n), T(n, 3)=A051303(n), T(n, 4)=A051304(n), T(n, 5)=A051305(n), T(n, 6)=A051306(n), T(n, 7)=A051307(n).

A084871 Number of 4-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 7, 41, 398, 6177, 128232, 2881531, 62769238, 1288737197, 25012685732, 463681018671, 8294783320578, 144410750517217, 2462999084589232, 41359616334934211, 686406989350511918, 11290725888842193237
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Crossrefs

Programs

  • Magma
    [(16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/4!, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (16^n - 12*12^n + 24*10^n + 4*9^n - 6*8^n + 6*7^n - 108*6^n + 108*5^n + 83*4^n - 166*3^n + 90*2^n)/4!.
From R. J. Mathar, Jul 08 2011: (Start)
G.f.: (-1 + 80*x - 2813*x^2 + 57293*x^3 - 749139*x^4 + 6577949*x^5 - 39353597*x^6 + 158972472*x^7 - 417774220*x^8 + 651991536*x^9 - 465379200*x^10) / ( (9*x-1) *(6*x-1) *(7*x-1) *(3*x-1) *(5*x-1) *(2*x-1) *(12*x-1) *(10*x-1) *(4*x-1) *(8*x-1) *(16*x-1) ).
a(n) = 82*a(n-1) - 2970*a(n-2) + 62700*a(n-3) - 856713*a(n-4) + 7947786*a(n-5) - 51019100*a(n-6) + 226259000*a(n-7) - 678011136*a(n-8) + 1304341632*a(n-9) - 1445575680*a(n-10) + 696729600*a(n-11). (End)

A084872 Number of 5-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 8, 56, 726, 17938, 722680, 35955180, 1798971434, 83885891894, 3612380896332, 145277787750064, 5534505187364062, 202229611397865690, 7158136006402746464, 247316732670273773108, 8389241054998193347410
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Crossrefs

Programs

  • Magma
    [(32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n)/120: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n)/120, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n)/120, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/5!)*(32^n - 20*24^n + 60*20^n + 20*18^n + 10*17^n - 90*16^n - 120*15^n + 150*14^n + 120*13^n - 480*12^n + 20*11^n + 720*10^n + 120*9^n - 445*8^n + 180*7^n - 1650*6^n + 1650*5^n + 870*4^n - 1740*3^n + 744*2^n).

A084873 Number of 6-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 9, 73, 1212, 44667, 3251186, 345094227, 39552733796, 4234657495267, 409948262617398, 36190736880911571, 2964860272283578040, 229165985114590010307, 16940021231116707830570
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(1/6!)*(64^n - 30*48^n + 120*40^n + 60*36^n + 60*34^n - 12*33^n - 315*32^n - 720*30^n + 810*28^n + 120*27^n + 480*26^n + 360*25^n - 1080*24^n - 720*23^n - 240*22^n - 540*21^n + 3180*20^n + 750*19^n + 660*18^n + 90*17^n - 4535*16^n - 5420*15^n + 6750*14^n + 5400*13^n - 13620*12^n + 900*11^n + 16440*10^n + 2740*9^n - 12165*8^n + 4110*7^n - 25650*6^n + 25650*5^n + 10474*4^n - 20948*3^n + 7560*2^n), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/6!)*(64^n - 30*48^n + 120*40^n + 60*36^n + 60*34^n - 12*33^n - 315*32^n - 720*30^n + 810*28^n + 120*27^n + 480*26^n + 360*25^n - 1080*24^n - 720*23^n - 240*22^n - 540*21^n + 3180*20^n + 750*19^n + 660*18^n + 90*17^n - 4535*16^n - 5420*15^n + 6750*14^n + 5400*13^n - 13620*12^n + 900*11^n + 16440*10^n + 2740*9^n - 12165*8^n + 4110*7^n - 25650*6^n + 25650*5^n + 10474*4^n - 20948*3^n + 7560*2^n).

A084874 Number of (k,m,n)-antichains of multisets with k=3 and m=2.

Original entry on oeis.org

0, 0, 9, 162, 2025, 21870, 219429, 2112642, 19847025, 183642390, 1682955549, 15327821322, 139038251625, 1257873017310, 11360034454869, 102475388237202, 923689006041825, 8321664254958630, 74945757885541389, 674816499677616282
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.
a(n) is also the number of entries that are divisible by 3 in rows 0 through 3^n-1 of Pascal's triangle A007318. - Tim Cieplowski, Nov 25 2014

Crossrefs

Programs

  • Magma
    [(9^n - 2*6^n + 3^n)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(9^n - 2*6^n + 3^n)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
    LinearRecurrence[{18,-99,162},{0,0,9},20] (* Harvey P. Dale, Oct 01 2023 *)
  • PARI
    for(n=0,50, print1((9^n - 2*6^n + 3^n)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/2!)*(9^n - 2*6^n + 3^n).
G.f.: -9*x^2 / ( (6*x-1)*(3*x-1)*(9*x-1) ). - R. J. Mathar, Jul 08 2011
E.g.f.: (exp(9*x) - 2*exp(6*x) + exp(3*x))/2. - G. C. Greubel, Oct 08 2017

A084875 Number of (k,m,n)-antichains of multisets with k=3 and m=3.

Original entry on oeis.org

0, 0, 1, 350, 24025, 1061570, 38306701, 1238697950, 37547263825, 1093418309690, 31035659056501, 866306577308150, 23915774118612025, 655397866616830610, 17872808187862527901, 485794481046271815950, 13175146525408965630625
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Programs

  • Magma
    [(27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n)/6: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
    LinearRecurrence[{77,-2277,32895,-242514,854388,-1102248},{0,0,1,350,24025,1061570},20] (* Harvey P. Dale, May 29 2025 *)
  • PARI
    for(n=0,50, print1((27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/3!)*(27^n - 6*18^n + 6*14^n + 3*9^n - 6*6^n + 2*3^n).
G.f.: -x^2*(-1-273*x+648*x^2+24300*x^3) / ( (18*x-1)*(9*x-1)*(6*x-1)*(3*x-1)*(14*x-1)*(27*x-1) ). - R. J. Mathar, Jul 08 2011

A084876 Number of (k,m,n)-antichains of multisets with k=3 and m=4.

Original entry on oeis.org

0, 0, 0, 310, 159300, 32389900, 4469327850, 503689260970, 50466655894200, 4701945998612200, 418104908350395750, 36055756736065208230, 3046399249526576159700, 253883533322134812268900, 20963248884482293139928450, 1720141562616331422239725090
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Programs

  • Magma
    [(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n)/24, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/4!)*(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 6*27^n + 6*26^n - 36*18^n + 36*14^n + 11*9^n - 22*6^n + 6*3^n).
G.f.: -10*x^3*(-31 - 5173*x + 663390*x^2 - 16812297*x^3 - 320866029*x^4 + 19383439320*x^5 - 243502067160*x^6 + 252158125680*x^7 + 6816687418800*x^8) / ( (6*x-1) *(54*x-1) *(42*x-1) *(3*x-1) *(9*x-1) *(27*x-1) *(31*x-1) *(26*x-1) *(18*x-1) *(81*x-1) *(36*x-1) *(14*x-1) ). - R. J. Mathar, Jul 08 2011

A084877 Number of (k,m,n)-antichains of multisets with k=3 and m=5.

Original entry on oeis.org

0, 0, 0, 114, 649850, 678772108, 377819587984, 153135104560046, 51758494975477206, 15644366957608679376, 4400899140179858419388, 1180668574169021790713938, 306827161657039584492179842
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Programs

  • Mathematica
    Table[(1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 10*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 120*54^n + 240*42^n + 40*36^n - 240*31^n + 35*27^n + 60*26^n - 210*18^n + 210*14^n + 50*9^n - 100*6^n + 24*3^n), {n, 0, 1000}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 10*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 120*54^n + 240*42^n + 40*36^n - 240*31^n + 35*27^n + 60*26^n - 210*18^n + 210*14^n + 50*9^n - 100*6^n + 24*3^n).

A084878 Number of (k,m,n)-antichains of multisets with k=3 and m=6.

Original entry on oeis.org

0, 0, 0, 15, 1729366, 10340309701, 24380294253318, 36539301527565851, 42407896071362952494, 42091311943805278602897, 37781049596189171124466966, 31727275407315883994852626087
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Formula

a(n) = (1/6!)*(729^n - 30*486^n + 120*378^n + 60*324^n + 60*294^n - 360*279^n - 12*276^n - 720*252^n + 15*243^n + 90*234^n + 720*231^n + 120*216^n + 720*210^n - 240*205^n + 360*196^n - 720*189^n - 180*187^n + 720*186^n - 720*176^n + 120*168^n - 720*167^n + 360*165^n - 300*162^n - 720*157^n + 180*156^n + 720*148^n - 240*145^n + 720*138^n + 30*134^n - 240*129^n + 900*126^n - 360*120^n + 180*111^n + 300*108^n - 20*102^n + 150*98^n - 1800*93^n - 1800*84^n + 85*81^n + 450*78^n + 1800*77^n + 1800*70^n - 1800*63^n + 300*56^n - 1020*54^n + 2040*42^n + 340*36^n - 2040*31^n + 225*27^n + 510*26^n - 1350*18^n + 1350*14^n + 274*9^n - 548*6^n + 120*3^n).
Previous Showing 21-30 of 34 results. Next