cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A147626 Octo-factorial numbers (5).

Original entry on oeis.org

1, 6, 84, 1848, 55440, 2106720, 96909120, 5233092480, 324451733760, 22711621363200, 1771506466329600, 152349556104345600, 14320858273808486400, 1460727543928465612800, 160680029832131217408000, 18960243520191483654144000, 2388990683544126940422144000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (8*n-10)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,8}];lst
    Table[8^(n-1)*Pochhammer[3/4, n-1], {n,40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [8^(n-1)*rising_factorial(3/4, n-1) for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

a(n+1) = Sum_{k=0..n} A132393(n,k)*6^k*8^(n-k). - Philippe Deléham, Nov 09 2008
a(n) = (-2)^n*Sum_{k=0..n} 4^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2*x/G(0), where G(k) = 1 + 1/(1 - 2*x*(8*k+6)/(2*x*(8*k+6) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
From G. C. Greubel, Oct 21 2022: (Start)
a(n) = 8^n * Pochhammer(n, 3/4) = -2^(3*n-1) * Pochhammer(n, -1/4).
a(n) = (8*n - 10)*a(n-1). (End)
Sum_{n>=1} 1/a(n) = 1 + (e/8^2)^(1/8)*(Gamma(3/4) - Gamma(3/4, 1/8)). - Amiram Eldar, Dec 20 2022

A053114 a(n) = ((8*n+9)(!^8))/9, related to A045755 ((8*n+1)(!^8) octo- or 8-factorials).

Original entry on oeis.org

1, 17, 425, 14025, 575025, 28176225, 1606044825, 104392913625, 7620682694625, 617275298264625, 54937501545551625, 5328937649918507625, 559538453241443300625, 63227845216283092970625
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(9; m,n) := ((8*n+m)(!^8))/m(!^8), m >= 0, n >= 0.

Crossrefs

Cf. A051189, A045755, A034908-12, A034975-6 (rows m=0..8).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(17/8))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 16, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 8*x)^(17/8), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-8*x)^(17/8))) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = ((8*n+9)(!^8))/9(!^8) = A045755(n+2)/9.
E.g.f.: 1/(1-8*x)^(17/8).
G.f.: 1/(1-17x/(1-8x/(1-25x/(1-16x/(1-33x/(1-24x/(1-41x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012

A196258 a(n) = 11^n*n!.

Original entry on oeis.org

1, 11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, 94121726392108800, 11388728893445164800, 1503312213934761753600, 214973646592670930764800, 33105941575271323337779200
Offset: 0

Views

Author

Philippe Deléham, Oct 27 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 11^n*n!.
E.g.f.: 1/(1-11*x).
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/11).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/11). (End)

A080775 Number of n X n monomial matrices whose nonzero entries are unit Hurwitz quaternions.

Original entry on oeis.org

1, 24, 1152, 82944, 7962624, 955514880, 137594142720, 23115815976960, 4438236667576320, 958659120196485120, 230078188847156428800, 60740641855649297203200, 17493304854426997594521600, 5457911114581223249490739200, 1833858134499291011828888371200, 660188928419744764258399813632000
Offset: 0

Views

Author

Artur Jasinski, Mar 11 2003

Keywords

Crossrefs

Formula

a(n) = 24^n*n!.
Previous Showing 11-14 of 14 results.