A295593 Numbers k such that Bernoulli number B_{k} has denominator 230010.
80, 160, 320, 13360, 17840, 18160, 20560, 25360, 26720, 28240, 30640, 35680, 36320, 36560, 41120, 43280, 45520, 46960, 50720, 52880, 56480, 60080, 61280, 69040, 70960, 71360, 72560, 72640, 79280, 84080, 87760, 91040, 92240, 93040, 93680, 93920, 94480, 97040, 97360
Offset: 1
Examples
Bernoulli B_{80} is -4603784299479457646935574969019046849794257872751288919656867/230010, hence 80 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,230010); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 17, 41}: select(filter, [seq(i, i=1..10^5)]);
Comments