cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A323769 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^n.

Original entry on oeis.org

1, 1, 2, 9, 83, 1268, 62283, 10296321, 2668655428, 1306416217435, 3055324257386077, 17213278350960504924, 137320554100797006975445, 3087543920644806918694851647, 335732238884967561227813578781572, 61125387696211835948801235842204794881
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2019

Keywords

Comments

The limit a(n) / (5^(n/4) * phi^(n*(n+1)) / (2*Pi*n)^(n/2)) does not exist but oscillates between 2 attractors. The value is dependent on the fractional part of n/(sqrt(5)*phi), see graph. - Vaclav Kotesovec, Jan 28 2019

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^n, {k, 0, n/2}], {n, 0, 15}] (* Vaclav Kotesovec, Jan 27 2019 *)
  • PARI
    {a(n) = sum(k=0, n\2, binomial(n-k, k)^n)}

Formula

a(n)^(1/n) ~ 5^(1/4) * phi^(n+1) / sqrt(2*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 27 2019
log(a(n)) ~ n*(n*v + w - log(n))/2 with v = 2*log((1 + sqrt(5))/2) and w = log((35 + 15*sqrt(5))/(8*Pi^2))/2, preceding formula recast. - Peter Luschny, Jan 28 2019

A375021 Expansion of 1/sqrt(1 - 2*x + 3*x^2 + 2*x^3 + x^4).

Original entry on oeis.org

1, 1, 0, -3, -7, -6, 11, 49, 78, 3, -297, -750, -691, 1271, 5970, 9877, 647, -38640, -100381, -95689, 170394, 827453, 1398933, 131418, -5472241, -14495327, -14186826, 24241947, 121177521, 208360152, 25541493, -807963639, -2175698844, -2179521039
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-2*x+3*x^2+2*x^3+x^4))
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n-k, k)^2);

Formula

n * a(n) = (2*n-1)*a(n-1) - 3*(n-1)*a(n-2) - (2*n-3)*a(n-3) - (n-2)*a(n-4).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n-k,k)^2.

A376721 Expansion of 1/sqrt((1 - x^3 - x^4)^2 - 4*x^7).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 4, 1, 1, 9, 9, 2, 16, 36, 17, 26, 100, 101, 61, 226, 401, 274, 477, 1227, 1289, 1225, 3186, 4982, 4432, 7841, 16040, 17902, 21457, 45517, 66610, 71327, 123444, 219825, 261945, 354095, 660573, 938598, 1138806, 1909676, 3125553
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/sqrt((1-x^3-x^4)^2-4*x^7))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(k, n-3*k)^2);

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k)^2.

A376722 Expansion of 1/sqrt((1 - x^4 - x^5)^2 - 4*x^9).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 1, 4, 1, 0, 1, 9, 9, 1, 1, 16, 36, 16, 2, 25, 100, 100, 26, 37, 225, 400, 226, 85, 442, 1225, 1226, 505, 833, 3137, 4901, 3217, 2080, 7120, 15878, 15976, 9081, 15696, 44182, 63626, 47125, 41625, 110926, 213688, 217801, 157300, 272251, 630458
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=60, x='x+O('x^N)); Vec(1/sqrt((1-x^4-x^5)^2-4*x^9))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)^2);

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k)^2.

A081207 Main diagonal of number square A081206.

Original entry on oeis.org

1, 2, 3, 7, 16, 37, 89, 216, 529, 1307, 3248, 8111, 20339, 51176, 129143, 326717, 828374, 2104361, 5354979, 13647682, 34830191, 89000157, 227674188, 583017657, 1494365341, 3833592212, 9842373849, 25287895051, 65016153154, 167264946727
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Floor[(n+k)/2],k]^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 02 2011 *)
    CoefficientList[Series[(1+x)/Sqrt[1-2x-x^2-2x^3+x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, (binomial(floor((n+k)/2), k))^2), ", ")) \\ G. C. Greubel, Feb 16 2017
    
  • PARI
    x='x+O('x^25); Vec((1+x)/sqrt(1-2*x-x^2-2*x^3+x^4)) \\ G. C. Greubel, Feb 16 2017

Formula

a(n) = Sum_{k=0..n} (binomial(floor((n+k)/2), k))^2.
G.f.: (1+x)/sqrt(1-2x-x^2-2x^3+x^4) - Paul Barry, Jun 04 2005
Conjecture: n*(n-2)*a(n) +(-2*n^2+5*n-1)*a(n-1) +(-n^2+3*n-4)*a(n-2) +(-2*n^2+7*n-4)*a(n-3) +(n-1)*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 12 2012
a(n) ~ (5-sqrt(5)) * ((3+sqrt(5))/2)^n / (2*sqrt(14*sqrt(5)-30) * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014
Equivalently, a(n) ~ 5^(1/4) * phi^(2*n + 1) / (2 * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021

A107597 Antidiagonal sums of triangle A107105: a(n) = Sum_{k=0..n} A107105(n-k,k), where A107105(n,k) = C(n,k)*(C(n,k) + 1)/2.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 38, 87, 205, 493, 1203, 2969, 7389, 18504, 46561, 117596, 297883, 756388, 1924484, 4904830, 12519121, 31995286, 81864992, 209681349, 537562018, 1379332297, 3542013533, 9102191107, 23406301490, 60226845008, 155059899921
Offset: 0

Views

Author

Paul D. Hanna, May 22 2005

Keywords

Comments

Limit a(n+1)/a(n) = (sqrt(5)+3)/2.

Crossrefs

Programs

  • PARI
    a(n)=(sum(k=0,n,binomial(n-k,k)^2)+fibonacci(n+1))/2
    
  • PARI
    {a(n)= if(n<0, 0, polcoeff( (1/(1-x-x^2) +1/sqrt((1+x+x^2)* (1-3*x+x^2)+ x*O(x^n)))/2, n))} /* Michael Somos, Jul 27 2007 */

Formula

a(n) = (A051286(n) + A000045(n+1))/2, where A000045(n+1) = Fibonacci(n+1) and A051286(n) = Whitney number of level n.
G.f.: ( 1/(1-x-x^2) + 1/sqrt( (1+x+x^2)*(1-3*x+x^2) ) )/2. - Michael Somos, Jul 27 2007
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} x^k * C(n,k)*(C(n,k) + 1)/2. - Paul D. Hanna, Aug 13 2014

A182882 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps of weight 1. L_n is the set of lattice paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1; an (1,0)-step with weight 2; a (1,1)-step with weight 2; a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 6, 3, 0, 1, 6, 3, 12, 4, 0, 1, 7, 24, 6, 20, 5, 0, 1, 12, 34, 60, 10, 30, 6, 0, 1, 31, 60, 100, 120, 15, 42, 7, 0, 1, 40, 185, 180, 230, 210, 21, 56, 8, 0, 1, 91, 260, 645, 420, 455, 336, 28, 72, 9, 0, 1, 170, 636, 980, 1715, 840, 812, 504, 36, 90, 10, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2010

Keywords

Comments

Sum of entries in row n is A051286(n).
T(n,0)=A182883(n).
Sum(k*T(n,k), k=0..n)=A182884(n).

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them have exactly one h step.
Triangle starts:
1;
0,1;
1,0,1;
2,2,0,1;
1,6,3,0,1;
6,3,12,4,0,1
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Programs

  • Maple
    G:=1/sqrt(1-2*t*z-2*z^2+t^2*z^2+2*t*z^3+z^4-4*z^3): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) =1/sqrt(1-2tz-2z^2+t^2*z^2+2t*z^3+z^4-4z^3).

A182886 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps. These are paths that start at (0,0), end on the horizontal axis and whose steps are of the following four kinds: a (1,0)-step with weight 1; a (1,0)-step with weight 2; a (1,1)-step with weight 2; a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 6, 1, 3, 1, 0, 6, 12, 3, 4, 1, 6, 0, 24, 21, 6, 5, 1, 0, 30, 12, 60, 34, 10, 6, 1, 0, 30, 90, 60, 121, 52, 15, 7, 1, 20, 0, 180, 215, 76, 21, 8, 1, 0, 140, 90, 630, 540, 421, 351, 107, 28, 9, 1, 0, 140, 560, 630, 1710, 1176, 846, 539, 146, 36, 10, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2010

Keywords

Comments

Sum of entries in row n is A051286(n).
T(3n,0) = binomial(2n,n) = A000984(n).
T(n,0) = 0 if n mod 3 > 0.
Sum_{k=0..n} k*T(n,k) = A182887(n).

Examples

			T(3,2)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely hH and Hh, have exactly two (1,0)-steps.
Triangle starts:
  1;
  0,  1;
  0,  1,  1;
  2,  0,  2,  1;
  0,  6,  1,  3,  1;
  0,  6, 12,  3,  4,  1;
		

Crossrefs

Programs

  • Maple
    G:=1/sqrt(1-2*t*z-2*t*z^2+t^2*z^2+2*t^2*z^3+t^2*z^4-4*z^3): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) = 1/sqrt(1 - 2tz - 2tz^2 + t^2*z^2 + 2t^2*z^3 + t^2*z^4 - 4z^3).

A182888 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps at level 0. These are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 8, 7, 6, 4, 0, 1, 17, 20, 12, 8, 5, 0, 1, 38, 44, 36, 18, 10, 6, 0, 1, 89, 104, 82, 56, 25, 12, 7, 0, 1, 206, 253, 204, 132, 80, 33, 14, 8, 0, 1, 485, 604, 513, 344, 195, 108, 42, 16, 9, 0, 1, 1152, 1466, 1262, 891, 530, 272, 140, 52, 18, 10, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2010

Keywords

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely hH and Hh, have exactly two (1,0)-steps at level 0.
Triangle starts:
   1;
   0,   1;
   1,   0,  1;
   2,   2,  0,  1;
   3,   4,  3,  0,  1;
   8,   7,  6,  4,  0,  1;
  17,  20, 12,  8,  5,  0, 1;
  38,  44, 36, 18, 10,  6, 0, 1;
  89, 104, 82, 56, 25, 12, 7, 0, 1;
  ...
		

Crossrefs

Row sums give A051286.
Column k=0 gives A182889.
Cf. A182890.

Programs

  • Maple
    G:=1/(z-t*z+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) = 1/( z-tz+sqrt((1+z+z^2)(1-3z+z^2)) ).
Sum_{k=0..n} k*T(n,k) = A182890(n).

A182893 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps at level 0. The members of L_n are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 4, 1, 3, 1, 4, 8, 6, 3, 4, 1, 12, 12, 18, 9, 6, 5, 1, 24, 36, 30, 32, 14, 10, 6, 1, 54, 84, 78, 64, 51, 22, 15, 7, 1, 130, 184, 204, 152, 120, 77, 34, 21, 8, 1, 300, 452, 462, 416, 280, 205, 113, 51, 28, 9, 1, 706, 1084, 1130, 1000, 770, 492, 328, 163, 74, 36, 10, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 12 2010

Keywords

Comments

Sum of entries in row n is A051286(n).
T(n,0)=A182894(n).
Sum(k*T(n,k), k=0..n)=A182895(n).

Examples

			T(3,2)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely hH and Hh, have exactly two (1,0)-steps at level 0.
Triangle starts:
1;
0,1;
0,1,1;
2,0,2,1;
2,4,1,3,1;
4,8,6,3,4,1.
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Programs

  • Maple
    G:=1/((1-t)*z*(1+z)+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) =1/[(1-t)z(1+z)+sqrt((1+z+z^2)(1-3z+z^2))].
Previous Showing 31-40 of 52 results. Next