cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A299499 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 11, 16, 9, 4, 1, 26, 44, 34, 14, 5, 1, 63, 122, 111, 60, 20, 6, 1, 153, 341, 351, 225, 95, 27, 7, 1, 376, 940, 1103, 796, 400, 140, 35, 8, 1, 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1, 2317, 7064, 10224, 9304, 5915, 2772, 994, 264, 54, 10, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2018

Keywords

Examples

			The partial polynomials p_{n,k}(x) start:
[0] 1
[1] 1, x
[2] 1, 2*x+ 1,    x^2
[3] 1, 3*x+ 4,  3*x^2+ 2*x,      x^3
[4] 1, 4*x+ 9,  6*x^2+12*x+1,  4*x^3+ 3*x^2,       x^4
[5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5
.
The polynomials P_{n}(x) start:
[0]   1
[1]   1 +    x
[2]   2 +  2*x +    x^2
[3]   5 +  5*x +  3*x^2 +    x^3
[4]  11 + 16*x +  9*x^2 +  4*x^3 +   x^4
[5]  26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0]   1
[1]   1,    1
[2]   2,    2,    1
[3]   5,    5,    3,    1
[4]  11,   16,    9,    4,    1
[5]  26,   44,   34,   14,    5,   1
[6]  63,  122,  111,   60,   20,   6,   1
[7] 153,  341,  351,  225,   95,  27,   7,  1
[8] 376,  940, 1103,  796,  400, 140,  35,  8, 1
[9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1
.
The square array P_{n}(k) near k=0:
......  [k=-2] 1, -1,  2, -1,  -1,   10,  -25,    51,    -68,     41, ...
A182883 [k=-1] 1,  0,  1,  2,   1,    6,    7,    12,     31,     40, ...
A051286 [k=0]  1,  1,  2,  5,  11,   26,   63,   153,    376,    931, ...
A108626 [k=1]  1,  2,  5, 14,  41,  124,  383,  1200,   3799,  12122, ...
A299443 [k=2]  1,  3, 10, 35, 127,  474, 1807,  6999,  27436, 108541, ...
......  [k=3]  1,  4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ...
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
    PrintPoly := p -> print(sort(expand(p),x,ascending)):
    T := (n,k) -> x^k*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x):
    P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]:
    seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P);
    R := proc(n,k) option remember; # Recurrence
    if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4,k)+
    (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end:
    for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od;
  • Mathematica
    nmax = 10;
    p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x];
    p[n_, x_] := Sum[p[n, k, x], {k, 0, n}];
    Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A298611(n).
P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n).
P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).

A323767 A(n,k) = Sum_{j=0..floor(n/2)} binomial(n-j,j)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 5, 3, 1, 1, 2, 9, 11, 8, 4, 1, 1, 2, 17, 29, 26, 13, 4, 1, 1, 2, 33, 83, 92, 63, 21, 5, 1, 1, 2, 65, 245, 338, 343, 153, 34, 5, 1, 1, 2, 129, 731, 1268, 1923, 1281, 376, 55, 6
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,      1,       1, ...
   1,  1,   1,    1,     1,      1,       1, ...
   2,  2,   2,    2,     2,      2,       2, ...
   2,  3,   5,    9,    17,     33,      65, ...
   3,  5,  11,   29,    83,    245,     731, ...
   3,  8,  26,   92,   338,   1268,    4826, ...
   4, 13,  63,  343,  1923,  10903,   62283, ...
   4, 21, 153, 1281, 11553, 108801, 1050753, ...
		

Crossrefs

Columns 0-5 give A004526(n+2), A000045(n+1), A051286, A181545, A181546, A181547.
Main diagonal gives A323769.
Cf. A011973,

Programs

  • Mathematica
    f := Sum[Power[Binomial[#1 - i, i], #2], {i, 0, #1/2}] &;a = Flatten[Reverse[DeleteCases[Table[Table[f[m - n, n], {n, 0, 20}], {m, 0, 20}], 0, Infinity], 2]] (* Elijah Beregovsky, Nov 24 2020 *)

A382841 a(n) = Sum_{k=0..floor(n/2)} (binomial(n,k) * binomial(n-k,k))^2.

Original entry on oeis.org

1, 1, 5, 37, 181, 1301, 9401, 65465, 498037, 3796021, 29221705, 230396585, 1828448425, 14651160265, 118544522045, 965075143037, 7907605360757, 65162569952245, 539515760866889, 4486877961224297, 37463151704756281, 313909383754331801, 2638892573249746445, 22249830926517611917
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z)*(1 - w) - (x*y)^2*z*w).

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[multinomial](n, n-2*k, k$2)^2, k=0..n/2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    Table[Sum[(Binomial[n, k] Binomial[n - k, k])^2, {k, 0, Floor[n/2]}], {n, 0, 23}]
    Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1, 1, 1}, 16], {n, 0, 23}]
    Table[SeriesCoefficient[1/((1 - x) (1 - y) (1 - z) (1 - w) - (x y)^2 z w), {x, 0, n}, {y, 0, n}, {z, 0, n}, {w, 0, n}], {n, 0, 23}]

Formula

a(n) ~ 3^(2*n+2) / (2^(5/2) * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 07 2025
a(n) = Sum_{k=0..floor(n/2)} A089627(n,k)^2. - Alois P. Heinz, Apr 07 2025

A125250 Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gerald McGarvey, Jan 15 2007

Keywords

Comments

It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n).

Examples

			Array starts as:
1 0 0 0  0  0  0 ...
0 1 1 0  0  0  0 ...
0 1 2 2  1  0  0 ...
0 0 2 5  5  3  1   0 ...
0 0 1 5 11 13  9   4   1   0...
0 0 0 3 13 26 32  26  14   5   1  0 ...
0 0 0 1  9 32 63  80  71  45  20  6  1 0 ...
0 0 0 0  4 26 80 153 201 191 135 71 27 7 1 0 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}];
    Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
  • PARI
    A=matrix(22,22);A[1,1]=1;A[2,2]=1;A[2,1]=0;A[1,2]=0;A[3,2]=1;A[2,3]=1; for(n=3,22,for(k=3,22,A[n,k]=A[n-2,k-2]+A[n-1,k-2]+A[n-2,k-1]+A[n-1,k-1])); for(n=1,22,for(i=1,n,print1(A[n-i+1,i],", ")))

Formula

A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).
From Peter Bala, Nov 07 2017: (Start)
T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i).
Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528).
O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2).
The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t).
R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind.
The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t].
R(n,1) = A002605; R(n,2) = A057089. (End)

A182880 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,1)-steps. L_n is the set of lattice paths of weight n that start at (0,0) and end on the horizontal axis and whose steps are of the following four kinds: a (1,0)-step with weight 1; a (1,0)-step with weight 2; a (1,1)-step with weight 2; a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 1, 2, 3, 2, 5, 6, 8, 18, 13, 44, 6, 21, 102, 30, 34, 222, 120, 55, 466, 390, 20, 89, 948, 1140, 140, 144, 1884, 3066, 700, 233, 3672, 7770, 2800, 70, 377, 7044, 18780, 9800, 630, 610, 13332, 43710, 31080, 3780, 987, 24946, 98610, 91560, 17850, 252, 1597, 46218, 216732, 254400, 72450, 2772
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2010

Keywords

Comments

Sum of entries in row n is A051286(n).

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, ud and du, have exactly one u step.
Triangle starts:
   1;
   1;
   2;
   3,  2;
   5,  6;
   8, 18;
  13, 44, 6;
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Programs

  • Maple
    G:=1/sqrt(1-2*z-z^2+2*z^3+z^4-4*t*z^3): Gser:=simplify(series(G,z=0,18)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,k),k=0..floor(n/3)) od; # yields sequence in triangular form

Formula

T(n,0) = A000045(n+1) (the Fibonacci numbers).
Sum_{k=0..n} k*T(n,k) = A182881(n).
G.f.: G(t,z) = 1/sqrt(1 - 2*z - z^2 + 2*z^3 + z^4 - 4*t*z^3).
The g.f. of column k is binomial(2n,n)*z^(3n)/(1-z-z^2)^(2n+1).
Apparently, T(n,1) = 2*A001628(n-3), T(n,2) = 6*A001873(n-6), T(n,3) = 20*A001875(n-9). - R. J. Mathar, Dec 11 2010

A182891 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps of weight 2 at level 0. The members of L_n are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 7, 3, 1, 15, 8, 3, 35, 21, 6, 1, 83, 50, 16, 4, 197, 123, 45, 10, 1, 473, 308, 117, 28, 5, 1145, 769, 304, 83, 15, 1, 2787, 1926, 798, 232, 45, 6, 6819, 4843, 2085, 636, 140, 21, 1, 16759, 12204, 5433, 1744, 416, 68, 7, 41345, 30813, 14154, 4749, 1200, 222, 28, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 12 2010

Keywords

Comments

Sum of entries in row n is A051286(n).
T(n,0)=A182892(n).
Sum(k*T(n,k), k=0..n)=A182890(n-1).

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely hH and Hh, have exactly one H-step at level 0.
Triangle starts:
1;
1;
1,1;
3,2;
7,3,1;
15,8,3;
35,21,6,1;
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Programs

  • Maple
    G:=1/(z^2-t*z^2+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser:=simplify(series(G,z=0,18)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form

Formula

G.f. G(t,z) =1/[z^2-tz^2+sqrt((1+z+z^2)(1-3z+z^2))].

A182898 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k returns to the horizontal axis (both from above and below). The members of L_n are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 1, 2, 3, 2, 5, 6, 8, 18, 13, 46, 4, 21, 112, 20, 34, 262, 80, 55, 600, 268, 8, 89, 1356, 816, 56, 144, 3046, 2324, 280, 233, 6832, 6320, 1144, 16, 377, 15354, 16620, 4136, 144, 610, 34658, 42652, 13728, 864, 987, 78706, 107520, 42816, 4144, 32, 1597, 180000, 267564, 127392, 17264, 352
Offset: 0

Views

Author

Emeric Deutsch, Dec 13 2010

Keywords

Comments

Sum of entries in row n is A051286(n).
T(n,0)=A000045(n+1) (the Fibonacci numbers).
Sum(k*T(n,k), k=0..n)=A182899(n).

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely ud and du, have 1 return to the horizontal axis.
Triangle starts:
1;
1;
2;
3,2;
5,6;
8,18;
13,46,4;
21,112,20;
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Programs

  • Maple
    eq := c = 1+z*c+z^2*c+z^3*c^2: c := RootOf(eq, c): G := 1/(1-z-z^2-2*t*z^3*c): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) =1/[1-z-z^2-2tz^3*c], where c satisfies c = 1+zc+z^2*c+z^3*c^2.
The trivariate g.f. H=H(t,s,z), where t (s) marks (1,-1)-returns ((1,1)-returns) to the horizontal axis, and z marks weight is given by H=1+zH+z^2*H+(t+s)z^3*cH, where c satisfies c = 1+zc+z^2*c+z^3*c^2.

A182903 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k peaks.The members of L_n are paths of weight n that start at (0,0), end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. A peak is a (1,1)-step followed by a (1,-1)-step.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 2, 21, 5, 48, 14, 1, 112, 38, 3, 263, 104, 9, 623, 276, 31, 1, 1484, 730, 99, 4, 3550, 1921, 309, 14, 8525, 5034, 929, 56, 1, 20537, 13145, 2739, 205, 5, 49612, 34208, 7956, 716, 20, 120136, 88780, 22804, 2394, 90, 1, 291519, 229860, 64650
Offset: 0

Views

Author

Emeric Deutsch, Dec 16 2010

Keywords

Comments

Number of entries in row n is 1+floor(n/3).
Sum of entries in row n is A051286(n).
T(n,0)= A182904(n).
Sum(k*T(n,k), k>=0)=A182884(n-2).

Examples

			T(7,2)=3. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and U=(1,1), D=(1,-1), we have hUDUD, UDhUD, UDUDh.
Triangle starts:
1;
1;
2;
4,1;
9,2;
21,5;
48,14,1;
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Formula

Let F=F(t,s,x,y,z) be the 5-variate g.f. of the considered weighted lattice paths, where z marks weight, t (s) marks number of peaks (valleys), x (y) indicates that the path starts with a (1,1)-step ((1,-1)-step). Then F(t,s,x,y,z)=1+z(1+z)F(t,s,1,1,z)+xz^3[t+H(t,s,z)-1]F(t,s,s,1,z)+yz^3[s+H(s,t,z)-1]F(t,s,1,t,z), where H=H(t,s,z) is given by H=1+zH+z^2*H+z^3*(t-1+H)[s(H-1-zH-z^2*H)+1+zH+z^2*H] (see A182900).

A183146 G.f.: Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]^3 * x^n.

Original entry on oeis.org

1, 1, 4, 16, 80, 407, 2221, 12380, 71196, 417016, 2484839, 15001779, 91603298, 564661194, 3509278042, 21964437947, 138330334357, 875977578584, 5574225259696, 35626247068500, 228592067446715, 1471959684881231
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2010

Keywords

Comments

Compare g.f. to a g.f. of the Whitney numbers in A051286:
Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k] * x^n.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 80*x^4 + 407*x^5 + 2221*x^6 +...
which equals the sum of the series:
A(x) = 1 + (1 + x)^3*x + (1 + 4*x + x^2)^3*x^2
+ (1 + 9*x + 9*x^2 + x^3)^3*x^3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^3*x^4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^3*x^5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^3*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,sum(k=0,m,binomial(m,k)^2*x^k)^3*x^m)+x*O(x^n),n)}

A114711 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n and having k weak ascents (1 <= k <= ceiling(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 3, 8, 9, 13, 22, 2, 21, 51, 10, 34, 111, 40, 55, 233, 130, 5, 89, 474, 380, 35, 144, 942, 1022, 175, 233, 1836, 2590, 700, 14, 377, 3522, 6260, 2450, 126, 610, 6666, 14570, 7770, 756, 987, 12473, 32870, 22890, 3570, 42, 1597, 23109, 72244
Offset: 1

Views

Author

Emeric Deutsch, Dec 27 2005

Keywords

Comments

A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps.

Examples

			T(5,2)=3 because we have (UH)D(UU), (UHH)D(H) and (HUH)D(H) (the weak ascents are shown between parentheses).
Triangle begins:
   1;
   1;
   2;
   3,  1;
   5,  3;
   8,  9;
  13, 22,  2;
		

Crossrefs

Programs

  • Maple
    G:=(1-z-z^2-sqrt(1-2*z-z^2+2*z^3+z^4-4*t*z^3))/2/z^2: Gser:=simplify(series(G,z=0,22)): for n from 1 to 18 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 18 do seq(coeff(P[n],t^j),j=1..ceil(n/3)) od; # yields sequence in triangular form

Formula

Row n contains ceiling(n/3) terms.
Row sums yield the RNA secondary structure numbers (A004148).
Column 1 yields the Fibonacci numbers (A000045).
Column 2 yields A001628.
T(3n+1,n+1) = A000108(n) (the Catalan numbers).
Sum_{k=1..ceiling(n/3)} k*T(n,k) = A051286(n-1) (n >= 1).
G.f.: G = G(t, z) satisfies G = z*(t+G) + z^2*G*(1+G).
Previous Showing 41-50 of 52 results. Next