A132370
Array read by antidiagonals: T(m,n) = number of spotlight tilings of a width 1 m X n frame.
Original entry on oeis.org
16, 34, 34, 58, 68, 58, 88, 112, 112, 88, 124, 166, 180, 166, 124, 166, 230, 262, 262, 230, 166, 214, 304, 358, 376, 358, 304, 214, 268, 388, 468, 508, 508, 468, 388, 268, 328, 482, 592, 658, 680, 658, 592, 482, 328, 394, 586, 730, 826, 874, 874, 826, 730, 586, 394
Offset: 3
A 3 X 3 frame with width 1 has 16 spotlight tilings.
Array begins:
===============================================
m/n | 3 4 5 6 7 8 9 10 ...
-----+-----------------------------------------
3 | 16 34 58 88 124 166 214 268 ...
4 | 34 68 112 166 230 304 388 482 ...
5 | 58 112 180 262 358 468 592 730 ...
6 | 88 166 262 376 508 658 826 1012 ...
7 | 124 230 358 508 680 874 1090 1328 ...
8 | 166 304 468 658 874 1116 1384 1678 ...
9 | 214 388 592 826 1090 1384 1708 2062 ...
10 | 268 482 730 1012 1328 1678 2062 2480 ...
...
A177696
Symmetrical triangle read by rows: T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
Original entry on oeis.org
1, 2, 2, 3, 8, 3, 4, 22, 22, 4, 5, 52, 88, 52, 5, 6, 114, 280, 280, 114, 6, 7, 240, 788, 1120, 788, 240, 7, 8, 494, 2056, 3816, 3816, 2056, 494, 8, 9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9, 10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10
Offset: 1
Triangle begins as:
1;
2, 2;
3, 8, 3;
4, 22, 22, 4;
5, 52, 88, 52, 5;
6, 114, 280, 280, 114, 6;
7, 240, 788, 1120, 788, 240, 7;
8, 494, 2056, 3816, 3816, 2056, 494, 8;
9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9;
10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10;
-
function T(n, k) // T = A177696
if k lt 1 or k gt n then return 0;
elif k eq 1 or k eq n then return n;
else return 2*(T(n-1, k-1) + T(n-1, k));
end if;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 02 2024
-
m = 2;T[n_, k_]:= T[n, k]= If[k==1 || k==n, n, m*(T[n-1, k-1] + T[n-1, k])];Table[T[n, k], {n, 10}, {k, n}]//Flatten
-
@CachedFunction
def T(n, k): # T = A177696
if (k<0 or k>n): return 0
elif (k==1 or k==n): return n
else: return 2*(T(n-1, k-1) + T(n-1, k))
flatten([[T(n, k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 02 2024
A213081
Exclusive-or based Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) XOR T(n-1,k), where XOR is the bitwise exclusive-or operator.
Original entry on oeis.org
1, 2, 2, 3, 0, 3, 4, 3, 3, 4, 5, 7, 0, 7, 5, 6, 2, 7, 7, 2, 6, 7, 4, 5, 0, 5, 4, 7, 8, 3, 1, 5, 5, 1, 3, 8, 9, 11, 2, 4, 0, 4, 2, 11, 9, 10, 2, 9, 6, 4, 4, 6, 9, 2, 10, 11, 8, 11, 15, 2, 0, 2, 15, 11, 8, 11, 12, 3, 3, 4, 13, 2, 2, 13, 4, 3, 3, 12, 13, 15
Offset: 1
Table begins:
1;
2, 2;
3, 0, 3;
4, 3, 3, 4;
5, 7, 0, 7, 5;
6, 2, 7, 7, 2, 6;
7, 4, 5, 0, 5, 4, 7;
8, 3, 1, 5, 5, 1, 3, 8;
9, 11, 2, 4, 0, 4, 2, 11, 9;
10, 2, 9, 6, 4, 4, 6, 9, 2, 10;
11, 8, 11, 15, 2, 0, 2, 15, 11, 8, 11;
Cf.
A007318 - Pascal's triangle read by rows.
Cf.
A051597 - Pascal's triangle, begin and end n-th row with n+1, read by rows.
Cf.
A080046 - Multiplicative Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) * T(n-1,k).
-
src = [0]*1024
dst = [0]*1024
for i in range(1,39):
dst[0] = dst[i-1] = i
for j in range(1,i-1):
dst[j] = src[j-1]^src[j]
for j in range(i):
src[j] = dst[j]
print(dst[j], end=',')
A336014
Irregular triangle read by rows: T(n,1) = T(n,2) = T(n,3*n-2) = T(n,3*n-1) = n for n >= 1 and T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n > 1, 3 <= k <= 3*(n-1).
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 6, 7, 8, 8, 8, 7, 6, 4, 4, 5, 5, 8, 10, 13, 15, 16, 16, 15, 13, 10, 8, 5, 5, 6, 6, 10, 13, 18, 23, 28, 31, 32, 31, 28, 23, 18, 13, 10, 6, 6, 7, 7, 12, 16, 23, 31, 41, 51, 59, 63, 63, 59, 51, 41, 31, 23, 16, 12, 7, 7
Offset: 1
Triangle begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20...
1 1 1
2 2 2 2 2 2
3 3 3 4 4 4 4 3 3
4 4 4 6 7 8 8 8 7 6 4 4
5 5 5 8 10 13 15 16 16 15 13 10 8 5 5
6 6 6 10 13 18 23 28 31 32 31 28 23 18 13 10 6 6
7 7 7 12 16 23 31 41 51 59 63 63 59 51 41 31 23 16 12 7 7
...
Superdiagonal 1 is
A029907 for n >= 1.
The main diagonal is
A208354 for n >= 1.
Subdiagonal 1 is
A102702(n-1) for n >= 1.
Subdiagonal 2 is
A206268(n+2) for n >= 1 (conjectured).
Subdiagonal 3 is
A191830(n+3) for n >= 1.
Comments