cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A132370 Array read by antidiagonals: T(m,n) = number of spotlight tilings of a width 1 m X n frame.

Original entry on oeis.org

16, 34, 34, 58, 68, 58, 88, 112, 112, 88, 124, 166, 180, 166, 124, 166, 230, 262, 262, 230, 166, 214, 304, 358, 376, 358, 304, 214, 268, 388, 468, 508, 508, 468, 388, 268, 328, 482, 592, 658, 680, 658, 592, 482, 328, 394, 586, 730, 826, 874, 874, 826, 730, 586, 394
Offset: 3

Views

Author

Bridget Tenner, Nov 09 2007

Keywords

Examples

			A 3 X 3 frame with width 1 has 16 spotlight tilings.
Array begins:
===============================================
m/n  |   3   4   5    6    7    8    9   10 ...
-----+-----------------------------------------
   3 |  16  34  58   88  124  166  214  268 ...
   4 |  34  68 112  166  230  304  388  482 ...
   5 |  58 112 180  262  358  468  592  730 ...
   6 |  88 166 262  376  508  658  826 1012 ...
   7 | 124 230 358  508  680  874 1090 1328 ...
   8 | 166 304 468  658  874 1116 1384 1678 ...
   9 | 214 388 592  826 1090 1384 1708 2062 ...
  10 | 268 482 730 1012 1328 1678 2062 2480 ...
  ...
		

Crossrefs

Programs

  • PARI
    T(m,n) = 2*(m-2)*(n-2)*(m+n-2) + (m-2)*(m+1) + (n-2)*(n+1) \\ Andrew Howroyd, Jan 02 2023

Formula

T(m,n) = 2*(m-2)*(n-2)*(m+n-2) + (m-2)*(m+1) + (n-2)*(n+1).

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 02 2023

A177696 Symmetrical triangle read by rows: T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 22, 22, 4, 5, 52, 88, 52, 5, 6, 114, 280, 280, 114, 6, 7, 240, 788, 1120, 788, 240, 7, 8, 494, 2056, 3816, 3816, 2056, 494, 8, 9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9, 10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10
Offset: 1

Views

Author

Roger L. Bagula, May 11 2010

Keywords

Examples

			Triangle begins as:
   1;
   2,    2;
   3,    8,     3;
   4,   22,    22,     4;
   5,   52,    88,    52,     5;
   6,  114,   280,   280,   114,     6;
   7,  240,   788,  1120,   788,   240,     7;
   8,  494,  2056,  3816,  3816,  2056,   494,     8;
   9, 1004,  5100, 11744, 15264, 11744,  5100,  1004,    9;
  10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10;
		

Crossrefs

Cf. A051597 (m=1).

Programs

  • Magma
    function T(n, k) // T = A177696
      if k lt 1 or k gt n then return 0;
      elif k eq 1 or k eq n then return n;
      else return 2*(T(n-1, k-1) + T(n-1, k));
      end if;
    end function;
    [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 02 2024
    
  • Mathematica
    m = 2;T[n_, k_]:= T[n, k]= If[k==1 || k==n, n, m*(T[n-1, k-1] + T[n-1, k])];Table[T[n, k], {n, 10}, {k, n}]//Flatten
  • SageMath
    @CachedFunction
    def T(n, k): # T = A177696
        if (k<0 or k>n): return 0
        elif (k==1 or k==n): return n
        else: return 2*(T(n-1, k-1) + T(n-1, k))
    flatten([[T(n, k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 02 2024

Formula

T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
From G. C. Greubel, Oct 02 2024: (Start)
Sum_{k=1..n} T(n, k) = (1/9)*(7*4^n + 6*n + 2).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1-(-1)^n)*(2-n) - [n=1]. (End)

Extensions

Edited by G. C. Greubel, Oct 02 2024

A213081 Exclusive-or based Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) XOR T(n-1,k), where XOR is the bitwise exclusive-or operator.

Original entry on oeis.org

1, 2, 2, 3, 0, 3, 4, 3, 3, 4, 5, 7, 0, 7, 5, 6, 2, 7, 7, 2, 6, 7, 4, 5, 0, 5, 4, 7, 8, 3, 1, 5, 5, 1, 3, 8, 9, 11, 2, 4, 0, 4, 2, 11, 9, 10, 2, 9, 6, 4, 4, 6, 9, 2, 10, 11, 8, 11, 15, 2, 0, 2, 15, 11, 8, 11, 12, 3, 3, 4, 13, 2, 2, 13, 4, 3, 3, 12, 13, 15
Offset: 1

Views

Author

Alex Ratushnyak, Jun 04 2012

Keywords

Examples

			Table begins:
   1;
   2,  2;
   3,  0,  3;
   4,  3,  3,  4;
   5,  7,  0,  7,  5;
   6,  2,  7,  7,  2,  6;
   7,  4,  5,  0,  5,  4,  7;
   8,  3,  1,  5,  5,  1,  3,  8;
   9, 11,  2,  4,  0,  4,  2, 11,  9;
  10,  2,  9,  6,  4,  4,  6,  9,  2, 10;
  11,  8, 11, 15,  2,  0,  2, 15, 11,  8, 11;
		

Crossrefs

Cf. A007318 - Pascal's triangle read by rows.
Cf. A051597 - Pascal's triangle, begin and end n-th row with n+1, read by rows.
Cf. A080046 - Multiplicative Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) * T(n-1,k).

Programs

  • Python
    src = [0]*1024
    dst = [0]*1024
    for i in range(1,39):
        dst[0] = dst[i-1] = i
        for j in range(1,i-1):
            dst[j] = src[j-1]^src[j]
        for j in range(i):
            src[j] = dst[j]
            print(dst[j], end=',')

A336014 Irregular triangle read by rows: T(n,1) = T(n,2) = T(n,3*n-2) = T(n,3*n-1) = n for n >= 1 and T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n > 1, 3 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 6, 7, 8, 8, 8, 7, 6, 4, 4, 5, 5, 8, 10, 13, 15, 16, 16, 15, 13, 10, 8, 5, 5, 6, 6, 10, 13, 18, 23, 28, 31, 32, 31, 28, 23, 18, 13, 10, 6, 6, 7, 7, 12, 16, 23, 31, 41, 51, 59, 63, 63, 59, 51, 41, 31, 23, 16, 12, 7, 7
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jul 04 2020

Keywords

Comments

The number of terms in row n is 3*n-1 = A016789(n-1).
The sum of row n is equal to 2*A094002(n-1) = 2*A188589(n).
Fibonacci(n) = T(n+k,n) - T(n+k-1,n) for n >= 1, k = 1,2,3,...
The elements b(k) of the main diagonal, superdiagonal 1 and all subdiagonals have the recursive formula: b(k) = 2*b(k-1) + b(k-2) - 2*b(k-3) - b(k-4) for k > 4.

Examples

			Triangle begins:
n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20...
1   1  1
2   2  2  2  2  2
3   3  3  4  4  4  4  3  3
4   4  4  6  7  8  8  8  7  6  4  4
5   5  5  8 10 13 15 16 16 15 13 10  8  5  5
6   6  6 10 13 18 23 28 31 32 31 28 23 18 13 10  6  6
7   7  7 12 16 23 31 41 51 59 63 63 59 51 41 31 23 16 12  7  7
...
		

Crossrefs

Superdiagonal 1 is A029907 for n >= 1.
The main diagonal is A208354 for n >= 1.
Subdiagonal 1 is A102702(n-1) for n >= 1.
Subdiagonal 2 is A206268(n+2) for n >= 1 (conjectured).
Subdiagonal 3 is A191830(n+3) for n >= 1.

Formula

T(n,k) = T(n,3*k-n) for 1 <= k <= 3*n-1.
T(n,k) = Sum_{u=2*(n-k)+3..2*n-k+1} ceiling(u/2)*A065941(k-2,u-2*(n-k)-3) for n >= 3, 3 <= k <= n.
T(n,k) = Sum_{m1=1..k-n} A208354(m1)*binomial(n-m1-1, k-n-m1) + Sum_{m2=1..2*n-k} A208354(m2)*binomial(n-m2-1, 2*n-k-m2) for n >= 2, n+1 <= k <= 2*n-1.
T(n,k) = Sum_{u=2*(k-2*n)+3..k-n+1} ceiling(u/2)*A065941(3*n-k-2,u-2*(k-2*n)-3) for n>= 3, 2*n <= k <= 3*(n-1).
T(n,k) = A208354(k) + (n-k)*Fibonacci(k) for n >= 3, 3 <= k <= n.
T(n,k) = A029907(k-1) + (n-k+1)*Fibonacci(k) for n >= 2, 3 <= k <= n+1.
Previous Showing 11-14 of 14 results.