A087304 Smallest nontrivial multiple of n whose nonzero digit product is the same as that of the nonzero digit product of n. By nontrivial one means a(n) is not equal to n or (10^k)*n. 0 if no such number exists.
11, 12, 1113, 104, 15, 132, 1071, 24, 11133, 110, 1001, 1020, 1131, 1022, 105, 32, 1071, 108, 133, 120, 100002, 1122, 161, 1008, 125, 1430, 702, 224, 3016, 11130, 10013, 160, 3003, 612, 315, 1332, 703, 342, 11193, 1040, 10004, 1008, 602, 1144, 225
Offset: 1
Examples
a(19) = 133 = 19*7 and 1*3*3 = 1*9.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A051801.
Programs
-
PARI
prd(n) = {my(d = digits(n), p = 1); for (k=1, #d, if (d[k], p *= d[k]);); p;} a(n) = {my(k = 2, prdn = prd(n)); while (prd(k*n) != prdn, k++; if (! (k % 10), k++)); k*n;} \\ Michel Marcus, Aug 12 2017
-
Python
from functools import reduce from operator import mul def A087304(n): i, p = 2, reduce(mul,(int(d) for d in str(n) if d != '0')) while (max(str(i)) == '1' and str(i).count('1') == 1) or reduce(mul,(int(d) for d in str(i*n) if d != '0')) != p: i += 1 return i*n # Chai Wah Wu, Aug 11 2017
Formula
a(10*n) = a(n)*10. - Chai Wah Wu, Aug 11 2017
Extensions
More terms from David Wasserman, Apr 19 2005
Comments