cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A098230 75-gonal numbers: a(n) = n*(73*n-71)/2.

Original entry on oeis.org

0, 1, 75, 222, 442, 735, 1101, 1540, 2052, 2637, 3295, 4026, 4830, 5707, 6657, 7680, 8776, 9945, 11187, 12502, 13890, 15351, 16885, 18492, 20172, 21925, 23751, 25650, 27622, 29667, 31785, 33976, 36240, 38577, 40987, 43470, 46026, 48655, 51357, 54132, 56980, 59901, 62895, 65962, 69102, 72315, 75601, 78960, 82392, 85897, 89475
Offset: 0

Views

Author

Parthasarathy Nambi, Oct 25 2004

Keywords

Crossrefs

Programs

Formula

G.f.: -x*(1+72*x) / (x-1)^3. - R. J. Mathar, Feb 05 2011
a(n) = n*(73*n - 71)/2.
E.g.f.: exp(x)*(x + 73*x^2/2). - Nikolaos Pantelidis, Feb 10 2023

A098924 45-gonal numbers: n*(43*n-41)/2.

Original entry on oeis.org

1, 45, 132, 262, 435, 651, 910, 1212, 1557, 1945, 2376, 2850, 3367, 3927, 4530, 5176, 5865, 6597, 7372, 8190, 9051, 9955, 10902, 11892, 12925, 14001, 15120, 16282, 17487, 18735, 20026, 21360, 22737, 24157, 25620, 27126, 28675, 30267
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 18 2004

Keywords

Comments

Similar to 21-gonal and 15-gonal numbers (A051873, A051867).

Crossrefs

Programs

Formula

a(n) = n*(43*n-41)/2.
G.f.: x*(1+42*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(x + 43*x^2/2). - Nikolaos Pantelidis, Feb 10 2023

Extensions

More terms from Stefan Steinerberger, Feb 15 2006

A373633 Positive integers that cannot be written as a sum of a practical number and a 15-gonal number.

Original entry on oeis.org

10, 11, 14, 15, 22, 26, 34, 38, 52, 53, 59, 68, 76, 77, 92, 107, 116, 117, 125, 131, 134, 149, 152, 158, 164, 173, 179, 184, 185, 187, 188, 206, 212, 227, 230, 236, 245, 248, 251, 254, 259, 268, 269, 283, 293, 299, 317, 326, 332, 347, 356, 371, 389, 398, 403
Offset: 1

Views

Author

Duc Van Khanh Tran, Jun 11 2024

Keywords

Comments

Somu and Tran (2024) conjectured that there are finitely many such integers. It was also conjectured that 1486748 is the largest such integer. This conjecture was checked up to 10^8.

Crossrefs

Programs

  • Mathematica
    Lim=403;Lim15=Ceiling[Sqrt[2Lim/13]];
    PracticalQ[nn_] := Module[{f, p, e, prod=1, ok=True}, If[nn<1 || (nn>1 && OddQ[n]), False, If[nn==1, True, f=FactorInteger[nn]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];prac= Select[Range[Lim], PracticalQ] ;
    seq={};Do[p15=i(13i-11)/2;p15i=prac+p15;AppendTo[seq,p15i],{i,0,Lim15}] (* sums of 15gonal and practical numbers *);
    Complement[Range[Lim],Union[Flatten[seq]]] (* James C. McMahon, Jun 12 2024 *)

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.

A360488 31-gonal numbers: a(n) = n*(29*n-27)/2.

Original entry on oeis.org

0, 1, 31, 90, 178, 295, 441, 616, 820, 1053, 1315, 1606, 1926, 2275, 2653, 3060, 3496, 3961, 4455, 4978, 5530, 6111, 6721, 7360, 8028, 8725, 9451, 10206, 10990, 11803, 12645, 13516, 14416, 15345, 16303, 17290, 18306, 19351, 20425, 21528, 22660, 23821, 25011, 26230
Offset: 0

Views

Author

Nikolaos Pantelidis, Feb 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (29 n - 27)/2, {n, 0, 30}]

Formula

G.f.: x*(1 + 28*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 29*x^2/2).
Previous Showing 11-15 of 15 results.