A319348
Lexicographically earliest infinite sequence such that a(i) = a(j) => A003557(i) = A003557(j) and A051953(i) = A051953(j), for all i, j >= 1.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 30, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 47, 2, 50, 2, 51, 52, 53, 46, 54, 2, 55, 56, 57, 2, 58, 41, 59, 60, 61, 2, 62, 37, 63, 64, 65, 66, 67, 2, 68, 69, 70, 2
Offset: 1
-
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
A051953(n) = (n-eulerphi(n));
v319348 = rgs_transform(vector(up_to,n,[A003557(n),A051953(n)]));
A319348(n) = v319348[n];
A344178
Difference between the arithmetic derivative of n and the cototient of n: a(n) = A003415(n) - A051953(n).
Original entry on oeis.org
0, 0, 0, 2, 0, 1, 0, 8, 3, 1, 0, 8, 0, 1, 1, 24, 0, 9, 0, 12, 1, 1, 0, 28, 5, 1, 18, 16, 0, 9, 0, 64, 1, 1, 1, 36, 0, 1, 1, 44, 0, 11, 0, 24, 18, 1, 0, 80, 7, 15, 1, 28, 0, 45, 1, 60, 1, 1, 0, 48, 0, 1, 24, 160, 1, 15, 0, 36, 1, 13, 0, 108, 0, 1, 20, 40, 1, 17, 0, 128, 81, 1, 0, 64, 1, 1, 1, 92, 0, 57, 1, 48, 1, 1, 1, 208
Offset: 1
-
Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] - # + EulerPhi[#] &, 96] (* Michael De Vlieger, May 24 2021 *)
-
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A344178(n) = A003415(n) - (n-eulerphi(n));
A361021
Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j), A001065(i) = A001065(j) and A051953(i) = A051953(j), for all i, j >= 1.
Original entry on oeis.org
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 29, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 48, 57, 3, 58, 59, 60, 3, 61, 42, 62, 63, 64, 3, 65, 38, 66, 67, 68, 69, 70, 3, 71
Offset: 1
Differs from
A353520 for the first time at n=254, where a(254) = 187, while
A353520(254) = 125.
-
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
A007814(n) = valuation(n,2);
A001065(n) = (sigma(n)-n);
A051953(n) = (n-eulerphi(n));
Aux361021(n) = [A007814(n), A001065(n), A051953(n)];
v361021 = rgs_transform(vector(up_to,n,Aux361021(n)));
A361021(n) = v361021[n];
A051961
Smallest number w such that A051953(w) = w - phi(w) is the n-th prime.
Original entry on oeis.org
4, 9, 25, 15, 35, 33, 65, 51, 95, 161, 87, 217, 185, 123, 215, 329, 371, 177, 427, 335, 213, 511, 395, 581, 1501, 485, 303, 515, 321, 545, 255, 635, 917, 411, 1529, 447, 1057, 1099, 455, 1169, 1211, 537, 1991, 573, 965, 591, 435, 2743, 1115, 681, 665
Offset: 1
The 31st term is 255 since 255 - phi(255) = 127, the 31st prime, and no number less than 255 has this property.
-
With[{c=Table[n-EulerPhi[n],{n,4000}]},Table[Position[c,p,1,1],{p,Prime[ Range[ 60]]}]]//Flatten (* Harvey P. Dale, Sep 14 2020 *)
-
a(n) = {my(k = 1); while(k - eulerphi(k) != prime(n), k++); k;} \\ Michel Marcus, Feb 02 2015
A053480
Sum of values when cototient function A051953 is iterated until fixed point is reached.
Original entry on oeis.org
1, 3, 4, 7, 6, 13, 8, 15, 13, 23, 12, 27, 14, 29, 23, 31, 18, 45, 20, 47, 34, 49, 24, 55, 31, 55, 40, 59, 30, 79, 32, 63, 47, 79, 47, 91, 38, 85, 62, 95, 42, 121, 44, 99, 79, 101, 48, 111, 57, 129, 71, 111, 54, 145, 78, 119, 91, 137, 60, 159, 62, 125, 103, 127, 83, 167
Offset: 1
If n=130 and A051953 is iterated, we obtain {130,82,42,30,22,12,8,4,2,1,0}. The sum of these terms is 130 + 92 + 42 + 30 + 12 + 8 + 4 + 2 + 1 = 333, so a(130)=333.
-
Array[Total@ Most@ NestWhileList[# - EulerPhi@ # &, #, # > 0 &] &, 66] (* Michael De Vlieger, Nov 20 2017 *)
A063476
Sum_{d |C(n)} d^2, where C(n) is the Cototient function n - phi(n) (A051953).
Original entry on oeis.org
0, 1, 1, 5, 1, 21, 1, 21, 10, 50, 1, 85, 1, 85, 50, 85, 1, 210, 1, 210, 91, 210, 1, 341, 26, 250, 91, 341, 1, 610, 1, 341, 170, 455, 122, 850, 1, 546, 260, 850, 1, 1300, 1, 850, 500, 850, 1, 1365, 50, 1300, 362, 1050, 1, 1911, 260, 1365, 500, 1300, 1, 2562, 1, 1365
Offset: 1
-
C(n)=n-eulerphi(n); j=[]; for(n=1,200,j=concat(j,sumdiv(C(n),d,d^2))); j
-
{ for (n=1, 1000, if (n>1, a=sumdiv(n-eulerphi(n), d, d^2), a=0); write("b063476.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 22 2009
A063480
C(n+3)=2*C(n), where C(n) is Cototient(n) := n - phi(n) (A051953).
Original entry on oeis.org
39, 55, 111, 183, 219, 459, 471, 579, 831, 867, 939, 1191, 1263, 1371, 1623, 1839, 1983, 2019, 2199, 2271, 2631, 2991, 3279, 3459, 3603, 3639, 3711, 3963, 4143, 4359, 4863, 4947, 4971, 5259, 5619, 5799, 5979, 6051, 6411, 7023, 7107, 7419, 7671, 7779
Offset: 1
C(39) = 15, C(39+3) = 2*15.
-
C(n)=n-eulerphi(n); j=[]; for(n=1,20000, if(C(n+3)==2*C(n),j=concat(j,n))); j
-
{ n=0; c1=c2=c3=1; for (m=1, 10^9, c=c1; c1=c2; c2=c3; c3=m-eulerphi(m); if (c3==2*c, write("b063480.txt", n++, " ", m - 3); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 23 2009
A082506
a(n) = gcd(2^n, n - phi(n)); largest power of 2 dividing cototient(n) = A051953(n).
Original entry on oeis.org
2, 1, 1, 2, 1, 4, 1, 4, 1, 2, 1, 8, 1, 8, 1, 8, 1, 4, 1, 4, 1, 4, 1, 16, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 8, 1, 2, 1, 8, 1, 8, 1, 32, 1, 2, 1, 4, 1, 4, 1, 32, 1, 2, 1, 4, 1, 32, 1, 32, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 4, 1, 4, 1, 16, 1, 2, 1, 16, 1, 16, 1, 64, 1, 8, 1
Offset: 1
Different from A069177, analogous sequence with totient, instead of cototient.
A098115
a(n) is the length of iteration trajectory when the cototient function (A051953) is applied to the half of the n-th primorial number (A070826(n) = A002110(n)/2).
Original entry on oeis.org
2, 3, 4, 7, 10, 5, 12, 15, 12, 28, 6, 6, 31, 12, 47, 29, 23, 32, 33, 24, 40, 28, 12, 35, 34, 56, 17, 36, 40, 123, 57, 61, 9, 99, 94, 132, 158, 172, 23, 43, 89, 186, 196, 194, 203, 157, 205, 62, 32, 26, 76, 105, 65, 45, 177, 56, 278
Offset: 1
For n = 7: list = {255255,163095,77815,16663,895,183,63,27,9,3,1,0}, a(7) = 12, while the comparable length for 510510 is A098202(7) = 43.
-
g[x_] :=x-EulerPhi[x]; f[x_] :=Length[FixedPointList[g, x]]-1; q[x_] :=Apply[Times, Table[Prime[j], {j, 1, x}]]; t=Table[f[q[w]/2], {w, 1, 37}]
a[n_] := Length@ NestWhileList[(# - EulerPhi[#])&, Times @@ Prime[Range[2, n]], # > 0 &]; Array[a, 30] (* Amiram Eldar, Nov 19 2024 *)
-
a(n) = {my(p = prod(i=2, n, prime(i)), c = 1); while(p > 0, c++; p -= eulerphi(p)); c;} \\ Amiram Eldar, Nov 19 2024
A141846
Triangle read by rows: A051731 * A051953^(n-k) * 0^(n-k), 1 <= k <= n.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 8
Offset: 1
First few rows of the triangle =
0;
0, 1;
0, 0, 1;
0, 1, 0, 2;
0, 0, 0, 0, 1;
0, 1, 1, 0, 0, 4;
0, 0, 0, 0, 0, 0, 1;
0, 1, 0, 2, 0, 0, 0, 4;
0, 0, 1, 0, 0, 0, 0, 0, 3;
0, 1, 0, 0, 1, 0, 0, 0, 0, 6;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 1, 1, 2, 0, 4, 0, 0, 0, 0, 0, 8;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 8;
...
Comments