cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A119304 Triangle read by rows: T(n,k) = binomial(4n-k,n-k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 7, 1, 220, 55, 10, 1, 1820, 455, 91, 13, 1, 15504, 3876, 816, 136, 16, 1, 134596, 33649, 7315, 1330, 190, 19, 1, 1184040, 296010, 65780, 12650, 2024, 253, 22, 1, 10518300, 2629575, 593775, 118755, 20475, 2925, 325, 25, 1, 94143280, 23535820
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Examples

			Triangle begins
       1;
       4,     1;
      28,     7,    1;
     220,    55,   10,    1;
    1820,   455,   91,   13,   1;
   15504,  3876,  816,  136,  16,  1;
  134596, 33649, 7315, 1330, 190, 19, 1;
		

Crossrefs

Rows sums are A052203. First column is A005810. Inverse of A119305.

Programs

  • Mathematica
    Flatten[Table[Binomial[4n-k,n-k],{n,0,9},{k,0,n}]] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    tabl(nn) = {for (n=0,nn,for (k=0,n,print1(binomial(4*n-k,n-k),", ");); print(););} \\ Indranil Ghosh, Feb 26 2017
    
  • Python
    from sympy import binomial
    i=0
    for n in range(12):
        for k in range(n+1):
            print(str(i)+" "+str(binomial(4*n-k,n-k)))
            i+=1 # Indranil Ghosh, Feb 26 2017

Formula

Riordan array (1/(1-4f(x)),f(x)) where f(x)(1-f(x))^3 = x.
From Peter Bala, Jun 04 2024: (Start)
'Horizontal' recurrence equation: T(n, 0) = binomial(4*n,n) and for k >= 1, T(n, k) = Sum_{i = 1..n+1-k} i*(i+1)/2 * T(n-1, k-2+i).
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(3*n-k-j, 2*n). (End)

A264773 Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0

Views

Author

Peter Bala, Nov 30 2015

Keywords

Comments

Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + ... is the o.g.f. for A002293 and f(x) = g(x)/(4 - 3*g(x)) = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + ... is the o.g.f. for A005810.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 3 and b = 2. See A092392, A264772, A264774 and A113139 for further examples.

Examples

			Triangle begins
  n\k |       0      1     2    3   4   5   6   7
------+-----------------------------------------------
   0  |       1
   1  |       4      1
   2  |      28      5     1
   3  |     220     36     6    1
   4  |    1820    286    45    7   1
   5  |   15504   2380   364   55   8   1
   6  |  134596  20349  3060  455  66   9   1
   7  | 1184040 177100 26334 3876 560  78  10   1
...
		

Crossrefs

A005810 (column 0), A052203 (column 1), A257633 (column 2), A224274 (column 3), A004331 (column 4). Cf. A002293, A007318, A092392 (C(2n-k,n)), A119301 (C(3n-k,n-k)), A264772, A264774.

Programs

  • Magma
    /* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
    seq(seq(A264773(n,k), k = 0..n), n = 0..10);
  • Mathematica
    A264773[n_,k_] := Binomial[4*n - 3*k, n - k];
    Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)

Formula

T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.

A268315 Decimal expansion of 256/27.

Original entry on oeis.org

9, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8
Offset: 1

Views

Author

Gheorghe Coserea, Feb 01 2016

Keywords

Examples

			9.481481481481481481481481481481...
		

Crossrefs

Programs

  • Magma
    [9] cat &cat[[4, 8, 1]^^45]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    Join[{9}, PadRight[{}, 120, {4, 8, 1}]] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    1.0 * 256/27
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A277170 Numerator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).

Original entry on oeis.org

1, -1, 1, -1, 1, -3, 1, -1, 25, -1, 1, -49, 1, -1, 9, -3, 1, -363, 3025, -1, 169, -169, 1, -3, 1, -49, 289, -289, 7225, -361, 361, -361, 1, -1, 1, -529, 529, -529, 330625, -148225, 3025, -675, 9, -3, 7569, -2523, 142129, -409757907, 808201, -961, 8649, -2883, 1, -147
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2016

Keywords

Comments

Neil Calkin found the closed forms of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) in 2007.

References

  • Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.

Crossrefs

Programs

  • Mathematica
    a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Numerator; Table[a[n], {n, 0, 53}] (* Jean-François Alcover, Oct 22 2016 *)

Formula

(s(n) =) 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) = a(n) / A277520(n).
s(2k) = (A005810(k) / A066802(k))^2 = (((4k)! * (3k)!) / ((6k)! * k!))^2.
s(2k+1) = -1/3 * (A052203(k) / A187364(k))^2 = -1/3 * (((4k+1)! * (3k)!) / ((6k+1)! * k!))^2.

A277520 Denominator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).

Original entry on oeis.org

1, 3, 25, 147, 1089, 20449, 48841, 312987, 55190041, 14322675, 100100025, 32065374675, 4546130625, 29873533563, 1859904071089, 4089135109921, 9399479144449, 22568149425822049, 1293753708921104809, 2835106739783283, 3289668853728536041
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2016

Keywords

Comments

Neil Calkin found the closed forms of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) in 2007.

References

  • Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.

Crossrefs

Cf. A005810, A052203, A066802, A187364, A277170 (numerators).

Programs

  • Mathematica
    a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Denominator;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 22 2016 *)

Formula

(s(n) =) 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) = A277170(n) / a(n).
s(2k) = (A005810(k) / A066802(k))^2 = (((4k)! * (3k)!) / ((6k)! * k!))^2.
s(2k+1) = -1/3 * (A052203(k) / A187364(k))^2 = -1/3 * (((4k+1)! * (3k)!) / ((6k+1)! * k!))^2.

A387091 a(n) = binomial(9*n+1,n).

Original entry on oeis.org

1, 10, 171, 3276, 66045, 1370754, 28989675, 621216192, 13442126049, 293052087900, 6426898010533, 141629804643600, 3133614810784185, 69566517009302868, 1548833316392624625, 34569147570568156800, 773240476721553042345, 17328840976366636057110
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A387091[n_] := Binomial[9*n + 1, n]; Array[A387091, 20, 0] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = binomial(9*n+1, n);

Formula

a(n) = Sum_{k=0..n} binomial(9*n-k,n-k).
G.f.: 1/(1 - x*g^7*(9+g)) where g = 1+x*g^9 is the g.f. of A062994.
G.f.: g^2/(9-8*g) where g = 1+x*g^9 is the g.f. of A062994.
G.f.: B(x)^2/(1 + 8*(B(x)-1)/9), where B(x) is the g.f. of A169958.
D-finite with recurrence +128*n*(8*n-5)*(4*n-1)*(8*n+1)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n) -81*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n+1)*(3*n-2)*(9*n-4)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Aug 19 2025
a(n) ~ 3^(18*n+3) / (sqrt(Pi*n) * 2^(24*n+5)). - Vaclav Kotesovec, Aug 20 2025
Previous Showing 11-16 of 16 results.