cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A038444 Sums of 2 distinct powers of 10.

Original entry on oeis.org

11, 101, 110, 1001, 1010, 1100, 10001, 10010, 10100, 11000, 100001, 100010, 100100, 101000, 110000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 100000001, 100000010, 100000100
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A052216 and of A007088.
Cf. A018900.

Programs

  • Haskell
    a038444 n = a038444_list !! (n-1)
    a038444_list = 11 : f [11] 90 where
       f xs@(x:_) z = ys ++ f ys (10 * z) where
                      ys = (x + z) : map (* 10) xs
    -- Reinhard Zumkeller, Jan 28 2015
    
  • Maple
    seq(seq(10^d + 10^j, j=0..d-1), d=1..10); # Robert Israel, Oct 14 2016
  • Mathematica
    Sort[Total/@Subsets[10^Range[0,7],{2}]] (* Harvey P. Dale, Apr 20 2012 *)
  • PARI
    a(n)= 10^(n-1-binomial(sqrtint(n*8)\/2, 2)) + 10^((sqrtint(n*8)+1)\2); \\ Ruud H.G. van Tol, Nov 29 2024
    
  • Python
    from math import isqrt
    def A038444(n): return 10**(m:=isqrt(n<<3)+1>>1)+10**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Mar 11 2025

Formula

G.f.: (10*x - 55*x^2 + Sum_{d>=1} (4*10^d+5)*x^((d^2-d)/2+1) - Sum_{d>=1} (445*10^(d-1)+5)*x^((d^2-d)/2+2))/(5*(1-x)*(1-10*x)). - Robert Israel, Oct 14 2016

Extensions

Offset corrected by Reinhard Zumkeller, Jan 28 2015

A242614 Triangle read by rows: row n contains numbers with sum of digits = n, and not greater than the n-th repunit (cf. A007953 and A002275).

Original entry on oeis.org

0, 1, 2, 11, 3, 12, 21, 30, 102, 111, 4, 13, 22, 31, 40, 103, 112, 121, 130, 202, 211, 220, 301, 310, 400, 1003, 1012, 1021, 1030, 1102, 1111, 5, 14, 23, 32, 41, 50, 104, 113, 122, 131, 140, 203, 212, 221, 230, 302, 311, 320, 401, 410, 500, 1004, 1013, 1022
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2014

Keywords

Comments

Number of terms in row n = A242622(n);
T(n,1) = A051885(n);
T(n,A242622(n)) = A002275(n);
for n > 0: number of repdigit terms in row n = A242627(n).

Examples

			The triangle begins:
. 0:  0
. 1:  1
. 2:  2,11
. 3:  3,12,21,30,102,111
. 4:  4,13,22,31,40,103,112,121,130,202, . . . ,1021,1030,1102,1111
. 5:  5,14,23,32,41,50,104,113,122,131, . . . ,11021,11030,11102,11111 .
		

Crossrefs

Programs

  • Haskell
    a242614 n k = a242614_row n !! (k-1)
    a242614_row n = filter ((== n) . a007953) [n .. a002275 n]
    a242614_tabf = map a242614_row [0..]
  • Mathematica
    Join[{0},Flatten[Table[Select[Range[FromDigits[PadRight[{},n,1]]], Total[ IntegerDigits[ #]] == n&],{n,5}]]] (* Harvey P. Dale, Oct 08 2019 *)

A055235 Sums of two powers of 3.

Original entry on oeis.org

2, 4, 6, 10, 12, 18, 28, 30, 36, 54, 82, 84, 90, 108, 162, 244, 246, 252, 270, 324, 486, 730, 732, 738, 756, 810, 972, 1458, 2188, 2190, 2196, 2214, 2268, 2430, 2916, 4374, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19686, 19692, 19710
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Crossrefs

Partial sums of A135293.

Programs

  • Mathematica
    mx = 10; Sort[Flatten[Table[3^x + 3^y, {y, 0, mx}, {x, 0, y}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    f[n_] := Block[{t = Floor[(Sqrt[1 + 8 (n - 1)] - 1)/2]}, 3^(n - 1 - t*(t + 1)/2) + 3^t]; Array[f, 49] (* Robert G. Wilson v, Oct 08 2011 *)
    Total/@Tuples[3^Range[0,10],2]//Union (* Harvey P. Dale, Aug 28 2025 *)
  • PARI
    for( n=0,5, for(k=0,n, print1(3^n+3^k",")))
    
  • PARI
    A055235(n)={ my( t=(sqrtint(8*n-7)-1)\2); 3^t+3^(n-1-t*(t+1)/2) }  \\ M. F. Hasler, Oct 08 2011
    
  • Python
    from math import isqrt
    def A055235(n): return 3**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+3**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 08 2025

Formula

a(n+1) = 3^(n-trinv(n)*(trinv(n)+1)/2)+3^trinv(n), where trinv(n) = floor((sqrt(1+8*n)-1)/2) = A003056(n) and n-trinv(n)*(trinv(n)+1)/2 = A002262(n). [corrected by M. F. Hasler, Oct 08 2011]
Regarded as a triangle, T(n, k) = 3^n + 3^k, because 3^n + 3^n < 3^(n+1) + 3^0 for all n > 0.

A237424 Numbers of the form (10^a + 10^b + 1)/3.

Original entry on oeis.org

1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334, 3337, 3367, 3667, 6667, 33334, 33337, 33367, 33667, 36667, 66667, 333334, 333337, 333367, 333667, 336667, 366667, 666667, 3333334, 3333337, 3333367, 3333667, 3336667
Offset: 1

Views

Author

Ahmad J. Masad, Feb 07 2014

Keywords

Comments

Has the property that the product of any two (not necessarily distinct) terms has digits in nondecreasing order.
Conjecture: This sequence is in a sense the maximally dense sequence with this nondecreasing products property. That is, it appears that every maximal sequence is either (i) A237424, (ii) a finite set of "extra" terms plus A237424 restricted to b=0 (which is A093137), or (iii) a finite set of "extra" terms plus A237424 restricted to a=b (which is A067275). (There might be one more case, not yet identified.) - David Applegate, Feb 12 2014
See A254143 and link for products a(i)*a(j) in natural order. - Reinhard Zumkeller, Jan 28 2015

Crossrefs

Programs

  • Haskell
    a237424 = flip div 3 . (+ 1) . a052216
    -- Reinhard Zumkeller, Jan 28 2015
    
  • Magma
    A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]];
    A237424:= func< n | (A052216[n]+1)/3 >;
    [A237424(n): n in [1..100]]; // G. C. Greubel, Feb 22 2024
    
  • Mathematica
    Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* Robert G. Wilson v, Jan 26 2015 *)
    (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* Harvey P. Dale, May 28 2019 *)
  • PARI
    list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ Charles R Greathouse IV, May 13 2015
    
  • Python
    from math import isqrt
    def A237424(n): return (10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1))+1)//3 # Chai Wah Wu, Apr 08 2025
  • SageMath
    A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)])
    def A237424(n): return (A052216[n-1]+1)//3
    [A237424(n) for n in range(1,101)] # G. C. Greubel, Feb 22 2024
    

Formula

a(n) = (A052216(n) + 1)/3. - Reinhard Zumkeller, Jan 28 2015

Extensions

Edited by David Applegate, Feb 07 2014

A279769 Numbers n such that the sum of digits of 9n is 18.

Original entry on oeis.org

11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 131, 132, 133, 141
Offset: 1

Views

Author

M. F. Hasler, Dec 18 2016

Keywords

Comments

Differs from A084854 from a(55) = 110 on.
Numbers n such that A008591(n) is a term of A235228. - Felix Fröhlich, Dec 18 2016
The digital sum of 9n is always a multiple of 9, and never zero. For most numbers < 100, the digital sum is equal to 9, but for example in the range [91..110] all numbers except 100 have their digital sum equal to 18. The b-file / graph gives a hint on the "asymptotic" distribution / density of this set. After a "flat" range like that at [91..110] there comes a record gap. Sizes [and upper ends] of record gaps are: 10 [a(2) = 21], 11 [a(56) = 121, a(119) = 231, a(188) = 341, ..., a(553) = 891, a(616) = 1001], 21 [a(671) = 1121], 31 [a(1331) = 2231], ..., 91 [a(4339) = 8891], 101 [a(4621) = 10001], 121 [a(4841) = 11121], 231 [a(9176) = 22231], ..., 891 [a(24217) = 88891], 1001 [a(25213) = 100001], 1121 [a(25928) = 111121], 2231 [a(47510) = 222231], ..., 8891 [a(108577) = 888891], 10001 [a(111574) = 1000001], 11121 [a(113576) = 1111121], 22231 [a(202511) = 2222231], ..., 88891 [a(416215) = 8888891], ... - M. F. Hasler, Dec 22 2016

Crossrefs

Cf. A007953 (digital sum), A008591, A084854.
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 141, Total@ IntegerDigits[9 #] == 18 &]
  • PARI
    is(n) = sumdigits(9*n)==18 \\ Felix Fröhlich, Dec 18 2016

Formula

a(n) = A235228(n)/9.

A279777 Numbers k such that the sum of digits of 9k is 27.

Original entry on oeis.org

111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...

Crossrefs

Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.

Programs

  • Mathematica
    Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(9*n)==27

A279768 Numbers n such that the sum of digits of 8n equals 16.

Original entry on oeis.org

11, 47, 56, 74, 83, 92, 101, 110, 119, 137, 146, 173, 182, 191, 209, 218, 227, 245, 272, 281, 299, 308, 317, 326, 335, 344, 353, 398, 407, 416, 434, 443, 452, 470, 479, 488, 506, 524, 533, 542, 551, 560, 569, 578, 605, 614, 632, 641, 659, 668, 677, 695
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088410 = A069543/8 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 700, Total@ IntegerDigits[8 #] == 16 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(8*n)==16

A279775 Numbers k such that the sum of digits of 5k equals 10.

Original entry on oeis.org

11, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 128, 146, 164, 182, 209, 218, 227, 236, 245, 254, 263, 272, 281, 290, 308, 326, 344, 362, 380, 407, 416, 425, 434, 443, 452, 461, 470, 488, 506, 524, 542, 560, 605, 614, 623, 632, 641, 650, 668, 686, 704, 722, 740, 803, 812, 821, 830, 848, 866, 884, 902, 920
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088407 = A069540/5 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 920, Total@ IntegerDigits[5 #] == 10 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(5*n)==10, [0..999])
    
  • Python
    def ok(n): return sum(map(int, str(5*n))) == 10
    print([k for k in range(921) if ok(k)]) # Michael S. Branicky, Nov 29 2021

A279770 Numbers n such that the sum of digits of 7n equals 14.

Original entry on oeis.org

11, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 155, 164, 182, 191, 209, 218, 236, 245, 263, 272, 299, 308, 317, 326, 335, 344, 353, 362, 380, 389, 416, 434, 452, 461, 470, 479, 488, 506, 515, 533, 560, 578, 587, 596, 605, 623, 632, 650, 659, 686, 722, 731
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088409 = A063416/7 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 731, Total@ IntegerDigits[7 #] == 14 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(7*n)==14

A279772 Numbers n such that the sum of digits of 2n equals 4.

Original entry on oeis.org

2, 11, 20, 56, 65, 101, 110, 155, 200, 506, 515, 551, 560, 605, 650, 1001, 1010, 1055, 1100, 1505, 1550, 2000, 5006, 5015, 5051, 5060, 5105, 5150, 5501, 5510, 5555, 5600, 6005, 6050, 6500, 10001, 10010, 10055, 10100, 10505, 10550, 11000, 15005, 15050, 15500
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088404 = A069537/2 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A052216 (sumdigits(n) = 2), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 15500, Total@ IntegerDigits[2 #] == 4 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(2*n)==4, [1..9999])
Previous Showing 21-30 of 56 results. Next