cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 62 results. Next

A240521 a(n) = A050376(n)*A050376(n+1) where A050376(n) is the n-th number of the form p^(2^k) with p is prime and k >= 0.

Original entry on oeis.org

6, 12, 20, 35, 63, 99, 143, 208, 272, 323, 437, 575, 725, 899, 1147, 1517, 1763, 2021, 2303, 2597, 3127, 3599, 4087, 4757, 5183, 5767, 6399, 6723, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 13673, 15367, 16637, 17947, 19043, 20711, 22499, 23707, 25591
Offset: 1

Views

Author

Vladimir Shevelev, Apr 07 2014

Keywords

Comments

Let m be an odd positive number. Let S_m denote the sequence {Product_{i=1..r} q_(n+t_i)}A050376%20and%20Sum">{n>=1}, where {q_i} is sequence A050376 and Sum{i=1..r} 2^(t_1 - t_i) is the binary representation of m, such that t_1 > t_2 > ... > t_r = 0. Note that {S_1, S_3, S_5, ...} is a partition of all integers > 1. Then S_1=A050376, which is obtained when we set r=1, t_1 = 0. [Formula made compatible with A240535 data by Peter Munn, Aug 10 2021]
This present sequence is S_3 in this partition. It is obtained when we set r=2, t_1=1, t_2=0.
S_m(n) = A052330(A030101(m)*2^(n-1)) = A329330(A050376(n), A052330(A030101(m))). - Peter Munn, Aug 10 2021
A minimal set of generators for A000379 as a group under A059897(.,.). - Peter Munn, Aug 11 2019

Crossrefs

Positions of 3's in A240535.
Sequences for other parts of the partition described in the first comment: A050376 (S_1), A240522 (S_5), A240524 (S_7), A240536 (S_9), A241024 (S_11), A241025 (S_13).

Programs

  • Python
    from sympy import primepi, integer_nthroot
    def A240521(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025

Formula

a(n) = A052330(3*2^(n-1)) = A329330(A050376(n), 6). - Peter Munn, Aug 10 2021

Extensions

More terms from Peter J. C. Moses, Apr 18 2014

A329575 Numbers whose smallest Fermi-Dirac factor is 3.

Original entry on oeis.org

3, 12, 15, 21, 27, 33, 39, 48, 51, 57, 60, 69, 75, 84, 87, 93, 105, 108, 111, 123, 129, 132, 135, 141, 147, 156, 159, 165, 177, 183, 189, 192, 195, 201, 204, 213, 219, 228, 231, 237, 240, 243, 249, 255, 267, 273, 276, 285, 291, 297, 300, 303, 309, 321, 327, 336, 339, 345
Offset: 1

Views

Author

Peter Munn, Apr 27 2020

Keywords

Comments

Every positive integer is the product of a unique subset of the terms of A050376 (sometimes called Fermi-Dirac primes). This sequence lists the numbers where the relevant subset includes 3 but not 2.
Numbers whose squarefree part is divisible by 3 but not 2.
Positive multiples of 3 that survive sieving by the rule: if m appears then 2m, 3m and 6m do not. Asymptotic density is 1/6.

Examples

			6 is the product of the following terms of A050376: 2, 3. These terms include 2, so 6 is not in the sequence.
12 is the product of the following terms of A050376: 3, 4. These terms include 3, but not 2, so 12 is in the sequence.
20 is the product of the following terms of A050376: 4, 5. These terms do not include 3, so 20 is not in the sequence.
		

Crossrefs

Intersection of any 2 of A003159, A145204 and A325424; also subsequence of A028983.
Ordered 3rd quadrisection of A052330.

Programs

  • Mathematica
    f[p_, e_] := p^(2^IntegerExponent[e, 2]); fdmin[n_] := Min @@ f @@@ FactorInteger[n]; Select[Range[350], fdmin[#] == 3 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    isok(m) = core(m) % 6 == 3; \\ Michel Marcus, May 01 2020
    
  • Python
    from itertools import count
    from sympy import integer_log
    def A329575(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,9)[0]+1):
                i2 = 9**i
                for j in count(0,2):
                    k = i2<x:
                        break
                    m = x//k
                    c -= (m-1)//6+(m-5)//6+2
            return c
        return 3*bisection(f,n,n) # Chai Wah Wu, Apr 10 2025

Formula

A223490(a(n)) = 3.
A007913(a(n)) == 3 (mod 6).
A059897(2, a(n)) = 2 * a(n).
A059897(3, a(n)) * 3 = a(n).
{a(n) : n >= 1} = {k : 3 * A307150(k) = 2 * k}.
A003159 = {a(n) / 3 : n >= 1} U {a(n) : n >= 1}.
A036668 = {a(n) / 3 : n >= 1} U {a(n) * 2 : n >= 1}.
A145204 \ {0} = {a(n) : n >= 1} U {a(n) * 2 : n >= 1}.
a(n) = 3*A339690(n). - Chai Wah Wu, Apr 10 2025

A096113 a(1) = 1, a(2) = 2; then all new products of subsets of pre-existing terms, then the first integer not present, and so on.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 18, 24, 36, 48, 72, 144, 5, 10, 15, 16, 20, 30, 32, 40, 54, 60, 64, 80, 90, 96, 108, 120, 160, 180, 192, 216, 240, 270, 288, 320, 324, 360, 384, 432, 480, 540, 576, 648, 720, 768, 864, 960, 1080, 1152, 1296, 1440, 1536, 1620, 1728, 1920, 1944
Offset: 1

Views

Author

Amarnath Murthy, Jun 29 2004

Keywords

Comments

Another rearrangement of the natural numbers.
Description: the iterative extension of the sequence is a loop over the steps: (i) Select the smallest integer not yet in the sequence and append it. (ii) Compute a set of all products of two or more distinct factors taken from the current, finite version of the sequence. (iii) Remove members from this set that are already in the sequence. Append the sorted list of the numbers in the set to the sequence. Return to (i). - R. J. Mathar, Feb 21 2009

Examples

			a(3) = 3 because all products of {1, 2} are already included. The only new product generated by {1, 2, 3} is 6, then 4 is the first integer which doesn't appear. Then {1, 2, 3, 6, 4} generates 8 (=2*4), 12 (=2*6=3*4), 18 (=3*6), 24 (=6*4=2*3*4), 36 (=2*3*6), 48 (=2*6*4), 72 (=3*6*4) and 144 (=2*3*6*4). Then the next term is 5. And so on.
		

Crossrefs

Programs

  • Mathematica
    L[1]={1} L[n_]:=L[n]=Join[L[n-1], Complement[Union[Exp[Map[ Total,Log[Subsets[Delete[L[n-1],1]]]]]],L[n-1]],{n}] L[6]

Extensions

Edited by Joel B. Lewis, Nov 15 2006

A182979 Fermi-Dirac representation of n. Let n have factorization p1^(2^e1) * p2^(2^e2) * ... * pr^(2^er), where each factor is in A050376. The number n is represented by a binary string that indicates which terms of A050376 appear in the factorization of n.

Original entry on oeis.org

0, 1, 10, 100, 1000, 11, 10000, 101, 100000, 1001, 1000000, 110, 10000000, 10001, 1010, 100000000, 1000000000, 100001, 10000000000, 1100, 10010, 1000001, 100000000000, 111, 1000000000000, 10000001, 100010, 10100, 10000000000000, 1011, 100000000000000, 100000001, 1000010, 1000000001, 11000, 100100
Offset: 1

Views

Author

Daniel Forgues, Feb 10 2011, Feb 13 2011

Keywords

Comments

Every number has a unique representation as a product of terms from A050376. - N. J. A. Sloane, Feb 11 2011
The "Fermi-Dirac factorization" of n, i.e., the factorization of n into prime powers of the form p_k^(2^e_k), e_k >= 0, (A050376) allows each of those prime powers to be used at most once, since this corresponds to the binary representation of the exponents of the prime powers p^a of the "Bose-Einstein factorization" of n, i.e., the classic prime factorization of n. (Cf. A050376 comments.)
The prime powers of the form p_k^(2^e_k), e_k >= 0 (A050376) might be called "Fermi-Dirac primes" since they may appear at most once (thus raised to powers 0 or 1) in the "Fermi-Dirac factorization" of n. Compare with the classic prime factorization of n, which might be called the "Bose-Einstein factorization" of n, where the primes (which might be called "Bose-Einstein primes") may appear any number of times >= 0.
In the "Fermi-Dirac representation" of n, if a given prime power with powers of two as exponents does not appear in the factorization of n into prime powers with powers of two as exponents, we use 0 as a placeholder; otherwise, we use 1 to indicate that the given prime power with powers of two as exponents does appear in the "Fermi-Dirac factorization" of n.
In the base-b representation of n, we do not show the leading 0's, except for 0 where it is more convenient to show it than to show nothing. Similarly, for the "Fermi-Dirac representation" of n, we do not show the leading 0's, except for 0, which is the representation of 1, where it is more convenient to show it than to show nothing.
The limit of the supremum of the number of "binary digits" of the representation of n is asymptotic to the number of primes up to n, i.e., n/log(n), making this representation absolutely impractical!
See A052330 for the numbers having representation as 0, 1, 10, 11, 100, 101, 110, 111, ... which is an ordering of the positive integers. (Cf. OEIS Wiki page.)
Let n have factorization (f_r)^g_r * ... * (f_2)^g_2 * (f_1)^g_1, where f_i is the i-th prime power of the form p_k^(2^e_k), e_k >= 0 (A050376, A302778); then a(n) = Sum_{i=1..r} g_i * 2^(i-1).
The number of 1's in a(n) is the number of terms of A050376 dividing n with odd maximal exponent. For example, if n=96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus only 2, 3 and 16 divide n with odd maximal exponents. Therefore, the number of 1's in a(96) is 3. Moreover, since 2=A050376(1), 3=A050376(2) and 16=A050376(9), then 1's appear in positions 1,2,9 from the right. - Vladimir Shevelev, Nov 02 2013

Examples

			"Fermi-Dirac factorizations" (cf. A050376 examples, here with exponents of "Fermi-Dirac primes" being either 0 or 1):
6 = 3*2 = 3^1*2^1, so a(6) = 11;
8 = 4*2 = 4^1*3^0*2^1, so a(8) = 101;
20 = 5*4 = 5^1*4^1*3^0*2^0, so a(20) = 1100;
24 = 4*3*2 = 4^1*3^1*2^1, so a(24) = 111;
27 = 9*3 = 9^1*7^0*5^0*4^0*3^1*2^0, so a(27) = 100010;
32 = 16*2 = 16^1*13^0*11^0*9^0*7^0*5^0*4^0*3^0*2^1, so a(32) = 100000001;
64 = 16*4 = 16^1*13^0*11^0*9^0*7^0*5^0*4^1*3^0*2^0, so a(64) = 100000100;
108 = 9*4*3 = 9^1*7^0*5^0*4^1*3^1*2^0, so a(108) = 100110;
120 = 5*4*3*2 = 5^1*4^1*3^1*2^1, so a(120) = 1111;
...
		

Crossrefs

Programs

  • Mathematica
    nn=24; p=Select[Range[nn], PrimeQ]; Do[p=Select[Union[p,p^2], #<=nn&], {Floor[Log[2,Log[2,nn]]]}]; Table[m=n; FromDigits[Table[If[Mod[m,i]==0, m=m/i; 1, 0], {i,Reverse[p]}]],{n,nn}]

Formula

Let q_1,q_2,q_3,... be consecutive terms of A050376 and n = q_1^a_1 * q_2^a_2 *...* q_r^a_r, where a_i = 0 or 1. Then a(n) = a_1 + 10*a_2 + ... +10^(r-1)*a_r. For example, since 30 = 2^1 * 3^1 * 4^0 * 5^1, then a(30)= 1 + 10 + 1000 = 1011. - Vladimir Shevelev, Nov 02 2013
a(n) = A007088(A052331(n)). - Antti Karttunen, Apr 17 2018

Extensions

Clearer definition from T. D. Noe, Feb 11 2011
Edited by N. J. A. Sloane, Jul 21 2018

A334110 The squares of squarefree numbers (A062503), ordered lexicographically according to their prime factors. a(n) = Product_{k in I} prime(k+1)^2, where I are the indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 4, 9, 36, 25, 100, 225, 900, 49, 196, 441, 1764, 1225, 4900, 11025, 44100, 121, 484, 1089, 4356, 3025, 12100, 27225, 108900, 5929, 23716, 53361, 213444, 148225, 592900, 1334025, 5336100, 169, 676, 1521, 6084, 4225, 16900, 38025, 152100, 8281, 33124, 74529, 298116, 207025, 828100, 1863225, 7452900, 20449, 81796, 184041
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, May 01 2020

Keywords

Comments

For the lexicographic ordering, the prime factors must be written in nonincreasing order. If we write the factors in nondecreasing order, we get a lexicographically ordered set with an order type that is greater than a natural number index - the resulting sequence does not include all qualifying numbers. (Note also that the symbols used for the lexicographic order are the prime numbers, not their digits.)
a(n) is the n-th power of 4 in the monoid defined in A331590.
Conjecture: a(n) is the position of the first occurrence of n in A334109.

Examples

			The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic ordering. The list starts with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
    1 = .
    4 = 2*2.
    9 = 3*3.
   36 = 3*3*2*2.
   25 = 5*5.
  100 = 5*5*2*2.
  225 = 5*5*3*3.
  900 = 5*5*3*3*2*2.
   49 = 7*7.
  196 = 7*7*2*2.
  441 = 7*7*3*3.
		

Crossrefs

Cf. A000079, A019565 (square roots), A048675, A097248, A225546, A267116, A332382, A334109 (a left inverse).
Column 2 of A329332. Permutation of A062503.
After 1, the right children of the leftmost edge of A334860, or respectively, the left children of the rightmost edge of A334866.
Subsequences: A001248, A061742, A166329.
Subsequence of A052330.
A003961, A003987, A059897, A331590 are used to express relationship between terms of this sequence.

Programs

  • Mathematica
    Array[If[# == 0, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[3^#]]] &, 51, 0] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A334110(n) = { my(p=2,m=1); while(n, if(n%2, m *= p^2); n >>= 1; p = nextprime(1+p)); (m); };

Formula

a(n) = A019565(n)^2.
For n >= 1, a(A000079(n-1)) = A001248(n).
For all n >= 0, A334109(a(n)) = n.
a(n+k) = A331590(a(n), a(k)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(n) = A225546(3^n).
a(2n) = A003961(a(n)).
a(2n+1) = 4 * a(2n).
a(2^k-1) = A061742(k).
A267116(a(n)) = 2.
A048675(a(n)) = 2n.
A097248(a(n)) = A332382(n) = A019565(2n).

A096115 If n = (2^k)-1, a(n) = a((n+1)/2) = k, if n = 2^k, a(n) = a(n-1)+1 = k+1, otherwise a(n) = (A000523(n)+1)*a(A035327(n-1)).

Original entry on oeis.org

1, 2, 2, 3, 6, 6, 3, 4, 12, 24, 24, 12, 8, 8, 4, 5, 20, 40, 40, 60, 120, 120, 60, 20, 15, 30, 30, 15, 10, 10, 5, 6, 30, 60, 60, 90, 180, 180, 90, 120, 360, 720, 720, 360, 240, 240, 120, 30, 24, 48, 48, 72, 144, 144, 72, 24, 18, 36, 36, 18, 12, 12, 6, 7, 42, 84, 84, 126
Offset: 1

Views

Author

Amarnath Murthy, Jun 30 2004

Keywords

Comments

A fractal sequence. For k in range [1,(2^n)-1], a(2^n + k)/a(2^n - k) = n+1. Each n > 1 occurs 2*A045778(n) times in the sequence.

Crossrefs

Permutation of A096111, i.e. a(n) = A096111(A122199(n)-1) [Note the different starting offsets]. Cf. A096113, A052330, A096114, A096116.

Programs

Extensions

Edited, extended and Scheme code added by Antti Karttunen, Aug 25 2006

A059900 Successively interleaved alternate bits in binary expansion of n gives vector of exponents in prime factorization of a(n).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 16, 32, 48, 96, 64, 128, 192, 384, 80, 160, 240, 480, 320, 640, 960, 1920, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 144, 288, 432, 864, 576, 1152, 1728, 3456, 720, 1440, 2160
Offset: 0

Views

Author

Marc LeBrun, Feb 07 2001

Keywords

Comments

Every value appears once. Inverse of A059884. Similar to A052330 (they diverge at n=16) but assigns bits via interleaving versus numerical order.

Examples

			To find a(7): 7 = ...000111; ... 0 0 1 1 = 3 -> 2^3 = 8; ... 0 1 = 1 -> 3^1 = 3; so a(7) = 3*8 = 24.
		

Crossrefs

A096114 a(1)=1, a(2)=2, a(3*2^k) = 3*2^k, a(3*2^k + i) = 3*2^k + a(3*2^k - i), for i in range [1, 3*2^k - 1].

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 10, 11, 9, 8, 7, 12, 19, 20, 21, 23, 22, 18, 16, 17, 15, 14, 13, 24, 37, 38, 39, 41, 40, 42, 46, 47, 45, 44, 43, 36, 31, 32, 33, 35, 34, 30, 28, 29, 27, 26, 25, 48, 73, 74, 75, 77, 76, 78, 82, 83, 81, 80, 79, 84, 91, 92, 93, 95, 94, 90, 88, 89, 87, 86, 85, 72
Offset: 1

Views

Author

Amarnath Murthy, Jun 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a = {1, 2}; Do[a = Join[a, {3*2^k}, 3*2^k + Reverse[a]], {k, 0, 4}]; a (* Ivan Neretin, Sep 04 2017 *)

Extensions

Edited, extended and Scheme code added by Antti Karttunen, Aug 25 2006

A186287 a(n) is the denominator of the rational number whose "factorization" into terms of A186285 has the balanced ternary representation corresponding to n.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 3, 3, 2, 1, 1, 2, 1, 1, 30, 15, 15, 10, 5, 5, 10, 5, 5, 6, 3, 3, 2, 1, 1, 2, 1, 1, 6, 3, 3, 2, 1, 1, 2, 1, 1, 105, 105, 105, 35, 35, 35, 35, 35, 35, 21, 21, 21, 7, 7, 7, 7, 7, 7, 21, 21, 21, 7, 7, 7, 7, 7, 7, 15, 15, 15, 5, 5, 5, 5, 5, 5, 3, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3
Offset: 0

Views

Author

Daniel Forgues, Feb 17 2011

Keywords

Comments

Denominators from the ordering of positive rational numbers by increasing balanced ternary representation of the "factorization" of positive rational numbers into terms of A186285 (prime powers with a power of three as exponent).

Examples

			The balanced ternary digits {-1,0,+1} are represented here as {2,0,1}.
   n BalTern A186286/A186287 (in reduced form)
   0      0  Empty product = 1 = 1/1, a(n) = 1
   1      1  2 = 2/1,                 a(n) = 1
   2     12  3*(1/2) = 3/2,           a(n) = 2
   3     10  3 = 3/1,                 a(n) = 1
   4     11  3*2 = 6 = 6/1,           a(n) = 1
   5    122  5*(1/3)*(1/2) = 5/6,     a(n) = 6
   6    120  5*(1/3) = 5/3,           a(n) = 3
   7    121  5*(1/3)*2 = 10/3,        a(n) = 3
...    ...
  41  12222  8*(1/7)*(1/5)*(1/3)*(1/2) = 8/210 = 4/105, a(n) = 105
		

Crossrefs

Formula

The balanced ternary representation of n
n = Sum(i=0..1+floor(log_3(2|n|)) n_i * 3^i, n_i in {-1,0,1},
is taken as the representation of the "factorization" of the positive rational number c(n)/d(n) into terms from A186285
c(n)/d(n) = Prod(i=0..1+floor(log_3(2|n|)) (A186285(i+1))^(n_i), where A186285(i+1) is the (i+1)th prime power with exponent being a power of 3. Then a(n) is the denominator, i.e., d(n).

A322822 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(2) = -1, f(n) = 0 if n is a Fermi-Dirac prime (A050376) > 2, and f(n) = A300840(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 9, 3, 3, 10, 3, 11, 12, 13, 3, 7, 3, 14, 15, 16, 3, 9, 3, 17, 18, 19, 20, 21, 3, 22, 23, 11, 3, 12, 3, 24, 25, 26, 3, 27, 3, 28, 29, 30, 3, 15, 31, 16, 32, 33, 3, 34, 3, 35, 36, 37, 38, 18, 3, 39, 40, 20, 3, 21, 3, 41, 42, 43, 44, 23, 3, 45, 3, 46, 3, 47, 48, 49, 50, 24, 3, 25, 51, 52, 53, 54, 55, 27, 3, 56, 57, 58, 3, 29, 3, 30
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A322823(i) = A322823(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1,oo,if(A302777(n), i++; v[i] = n); if(i == up_to,return(v))); };
    v050376 = A050376list(up_to);
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300840(n) = A052330(A052331(n)>>1);
    A322822aux(n) = if((2==n),-1,if(A302777(n),0,A300840(n)));
    v322822 = rgs_transform(vector(up_to,n,A322822aux(n)));
    A322822(n) = v322822[n];
Previous Showing 31-40 of 62 results. Next