cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A072413 Numbers k such that the LCM of exponents in the prime factorization of k does not equal the product of the exponents.

Original entry on oeis.org

36, 100, 144, 180, 196, 216, 225, 252, 300, 324, 396, 400, 441, 450, 468, 484, 576, 588, 612, 676, 684, 700, 720, 784, 828, 882, 900, 980, 1000, 1008, 1044, 1080, 1089, 1100, 1116, 1156, 1200, 1225, 1260, 1296, 1300, 1332, 1444, 1452, 1476, 1512, 1521
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 2, 29, 348, 3548, 35761, 358258, 3583892, 35843109, 358440763, ... . Apparently, the asymptotic density of this sequence exists and equals 0.03584... . - Amiram Eldar, Sep 09 2022

Examples

			k = 36 = 2*2*3*3; exponent set = {2,2}; LCM = 2, product = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1600, LCM @@ # != Times @@ # &@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, May 15 2016 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && lcm(f)!=factorback(f) \\ Charles R Greathouse IV, Jan 14 2017

Formula

A005361(a(n)) != A072411(a(n)).

A304328 a(n) = n/(largest perfect power divisor of n).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Comments

Not all terms are squarefree numbers; for example, a(500) = 4.

Crossrefs

Programs

  • Mathematica
    Table[n/Last[Select[Divisors[n],#===1||GCD@@FactorInteger[#][[All,2]]>1&]],{n,100}]
  • PARI
    a(n)={my(m=1); fordiv(n, d, if(ispower(d), m=max(m,d))); n/m} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) * A203025(n) = n.

A072412 Numbers k such that the LCM of exponents in the prime factorization of k does not equal the largest exponent.

Original entry on oeis.org

72, 108, 200, 288, 360, 392, 432, 500, 504, 540, 600, 648, 675, 756, 792, 800, 864, 936, 968, 972, 1125, 1152, 1176, 1188, 1224, 1323, 1350, 1352, 1368, 1372, 1400, 1404, 1440, 1500, 1568, 1656, 1800, 1836, 1944, 1960, 2000, 2016, 2052, 2088, 2160
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

This sequence differs from the Achilles numbers (A052486).

Examples

			k = 360 = 2*2*2*3*3*5, exponent set = {3,2,1}; LCM=6, max=3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], LCM @@ (e = FactorInteger[#][[;; , 2]]) != Max[e] &] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && vecmax(f)!=lcm(f) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A051903(a(n)) != A072411(a(n)).

A378002 Achilles numbers that are products of primorials.

Original entry on oeis.org

72, 288, 432, 864, 1152, 1800, 2592, 3456, 4608, 5400, 6912, 7200, 10368, 10800, 15552, 18432, 21600, 27648, 28800, 31104, 41472, 43200, 54000, 55296, 62208, 64800, 73728, 86400, 88200, 93312, 108000, 115200, 124416, 162000, 165888, 172800, 194400, 221184, 259200
Offset: 1

Views

Author

Michael De Vlieger, Nov 16 2024

Keywords

Comments

Products of primorials that are powerful but not perfect powers.

Examples

			Prime power decomposition of the first 12 terms:
   a(1) =   72 = 2^3 * 3^2
   a(2) =  288 = 2^5 * 3^2
   a(3) =  432 = 2^4 * 3^3
   a(4) =  864 = 2^5 * 3^3
   a(5) = 1152 = 2^7 * 3^2
   a(6) = 1800 = 2^3 * 3^2 * 5^2
   a(7) = 2592 = 2^5 * 3^4
   a(8) = 3456 = 2^7 * 3^3
   a(9) = 4608 = 2^9 * 3^2
  a(10) = 5400 = 2^3 * 3^3 * 5^2
  a(11) = 6912 = 2^8 * 3^3
  a(12) = 7200 = 2^5 * 3^2 * 5^2
		

Crossrefs

Programs

  • Mathematica
    (* First load function f in A025487, then: *)
    Select[Rest@ Union@ Flatten@ f[14],
     And[Divisible[#, Apply[Times, #2[[All, 1]] ]^2],
       GCD @@ #2[[All, -1]] == 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A286708 \ A001597 and A025487.
Intersection of A052486 and A025487.
Proper subset of A364930, in turn a proper subset of A369374.
Proper subset of A377854.

A203662 Achilles number whose largest proper divisor is also an Achilles number.

Original entry on oeis.org

864, 1944, 3888, 4000, 5400, 6912, 9000, 10584, 10800, 10976, 17496, 18000, 21168, 21600, 24696, 25000, 26136, 30375, 31104, 32000, 34992, 36000, 36504, 42336, 42592, 43200, 48600, 49000, 49392, 50000, 52272, 55296, 62208, 62424, 68600, 69984
Offset: 1

Views

Author

Antonio Roldán, Jan 04 2012

Keywords

Comments

Exponent of smallest prime divisor of n is greater than or equal to 3.
Both N and the largest proper divisor of N share the same prime factors with different exponents.

Examples

			17496 is in the sequence because 17496=2^3*3^7 (Achilles number) and the largest proper divisor 8748=2^2*3^7 is also an Achilles number.
		

Crossrefs

Programs

  • Mathematica
    (* First run the program for A052486 to define achillesQ *) Select[Range[50000], achillesQ[#] && achillesQ[Divisors[#][[-2]]] &] (* Alonso del Arte, Jan 05 2012 *)
  • Python
    # uses program in A052486
    from itertools import count, islice
    from math import gcd
    from sympy import factorint
    def A203662_gen(): # generator of terms
        def g(x):
            (f:=factorint(x))[min(f)]-=1
            return (x,f.values())
        return map(lambda x:x[0],filter(lambda x:all(d>1 for d in x[1]) and gcd(*x[1])==1,map(g,(A052486(i) for i in count(1)))))
    A203662_list = list(islice(A204662_gen(),20)) # Chai Wah Wu, Sep 10 2024

A247246 Differences of consecutive Achilles numbers.

Original entry on oeis.org

36, 92, 88, 104, 40, 68, 148, 27, 125, 64, 104, 4, 153, 27, 171, 29, 20, 196, 232, 144, 56, 312, 280, 108, 188, 199, 113, 67, 189, 72, 344, 16, 112, 232, 268, 63, 45, 392, 292, 32, 76, 8, 80, 587, 50, 147, 456, 184, 288, 488, 115, 772, 137, 36, 40, 212, 248
Offset: 1

Views

Author

Eric Chen, Nov 28 2014

Keywords

Comments

29 is the first prime in this sequence, and it equals 1352 - 1323. Clearly, if the difference is prime, then these two Achilles numbers must be relatively prime, so primes appear in this sequence rarely. However, are there infinitely many n such that a(n) is prime?
The number 1 can also appear in this sequence, because it equals 5425069448 - 5425069447 = (2^3 * 26041^2) - (7^3 * 41^2 * 97^2). Does every natural number appear in this sequence? If so, do they appear infinitely often?

Crossrefs

Programs

  • Maple
    f:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
    Achilles:= select(f, [$1..10^5]):
    seq(Achilles[i+1]-Achilles[i],i=1..nops(Achilles)-1); # Robert Israel, Dec 13 2014
  • Mathematica
    achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD @@ ee == 1];
    Select[Range[10^4], achillesQ] // Differences (* Jean-François Alcover, Sep 26 2020 *)
  • PARI
    isA052486(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n); }
    lista(nn) = {v = select(n->isA052486(n), vector(nn, i, i)); vector(#v-1, n, v[n+1] - v[n]);} \\ Michel Marcus, Nov 29 2014
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A247246(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+1, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
            return c
        return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A052486(n+1) - A052486(n).

A304339 Fixed point of f starting with n, where f(x) = x/(largest perfect power divisor of x).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2
Offset: 1

Views

Author

Gus Wiseman, May 11 2018

Keywords

Comments

All terms are squarefree numbers. First differs from A304328 at a(500) = 1, A304328(500) = 4.

Examples

			f maps 500 -> 4 -> 1 -> 1, so a(500) = 1.
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    op[n_]:=n/Last[Select[Divisors[n],!radQ[#]&]];
    Table[FixedPoint[op,n],{n,200}]
  • PARI
    a(n)={while(1, my(m=1); fordiv(n, d, if(ispower(d), m=max(m,d))); if(m==1, return(n)); n/=m)} \\ Andrew Howroyd, Aug 26 2018

A366854 Powers k^m such that k is neither squarefree nor prime powers, and m > 1.

Original entry on oeis.org

144, 324, 400, 576, 784, 1296, 1600, 1728, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 5832, 6400, 7056, 7744, 8000, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 13824, 14400, 15376, 15876, 17424, 18225
Offset: 1

Views

Author

Michael De Vlieger, Jan 01 2024

Keywords

Comments

Analogous to A303606 = { k^m : Omega(k) = omega(k) > 1, m > 1 }, i.e., squarefree composite k (in A120944) raised to m > 1. Proper subset of A131605, itself a proper subset of A286708, which is in turn a proper subset of A126706. This sequence does not intersect Achilles numbers A052486.

Examples

			Let b(n) = A126706(n).
a(1) = b(1)^2 = 12^2 = 144. Since 144 = 2^4*3^2, it is both powerful and a perfect power.
a(2) = b(2)^2 = 18^2 = 324.
a(3) = b(3)^2 = 20^2 = 400.
a(8) = b(1)^3 = 12^3 = 1728, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 20000; i = 1; k = 2;
    MapIndexed[Set[S[First[#2]], #1] &,
      Select[Range@ Sqrt[nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &] ];
    Union@ Reap[
      While[j = 2;
        While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2,
        k++; i++] ][[-1, 1]]

Formula

This sequence is A126706(i)^m, m > 1.
A131605 = union of {1}, A303606, and {a(n)}.
A286708 = union of A303606, {a(n)}, and A052486.
A001597 = union of {1}, A246547, A303606, and {a(n)}.
A001694 = union of A246547, A303606, {a(n)}, and A052486.

A369118 k is a term if and only if k is a composite number where the bases and the exponents of its factors in the prime decomposition are all odd primes.

Original entry on oeis.org

27, 125, 243, 343, 1331, 2187, 2197, 3125, 3375, 4913, 6859, 9261, 12167, 16807, 24389, 29791, 30375, 35937, 42875, 50653, 59319, 68921, 78125, 79507, 83349, 84375, 103823, 132651, 148877, 161051, 166375, 177147, 185193, 205379, 226981, 273375, 274625
Offset: 1

Views

Author

Peter Luschny, Jan 17 2024

Keywords

Comments

Every term is divisible by a cube.
If n and k are terms then n*k is a term if and only if gcd(n, k) = 1.
From Michael De Vlieger, Jan 19 2024: (Start)
Prime exponents of prime power factors p^m | k imply that k is a powerful number. Hence this sequence is a proper subset of A001694, and k is of the form a^2 * b^3.
Prime exponents m imply either perfect powers k in A001597 such that all the m are the same, or an Achilles number k (in A052486) if the exponents differ. This is because prime p divides itself but is coprime to primes q != p. Therefore this sequence is not a subsequence of A001597.
The sequence consists of composite prime powers (A246547) and powerful numbers that are not prime powers (A286708), both of which are numbers that are not squarefree (A013929). (End)

Examples

			25015118625 = 3^5 * 5^3 * 7^7 is a term.
3125 = 5^5 and 3375 = 3^3 * 5^3 are terms but 3125*3375 is not a term.
		

Crossrefs

Cf. A002808 (superset), A001694 (superset).
A051674 is a subsequence for n>1.
Subsequence of A381825.

Programs

  • Mathematica
    A369118Q[n_] := OddQ[n] && AllTrue[FactorInteger[n], OddQ[#] && PrimeQ[#]&, 2];
    Select[Range[500000], A369118Q] (* Paolo Xausa, Jan 19 2024 *)
  • PARI
    isok(k) = k > 1 && (k % 2 && #select(x -> (x <= 2) || !isprime(x), factor(k)[, 2]) == 0); \\ Amiram Eldar, Mar 08 2025
  • SageMath
    def isA369118(n):
        return (n > 1 and is_odd(n) and all(is_odd(f[1]) and is_prime(f[1])
               for f in factor(n)))
    print([n for n in range(1, 300000) if isA369118(n)])
    

Formula

Sum_{n>=1} 1/a(n) = -1 + Product_{prime >= 3} (1 + Sum_{prime q >= 3} 1/p^q) = 0.05534030537711484966... . - Amiram Eldar, Mar 08 2025

A378859 Achilles numbers that are abundant.

Original entry on oeis.org

72, 108, 200, 288, 392, 432, 500, 648, 800, 864, 968, 972, 1152, 1352, 1372, 1568, 1800, 1944, 2000, 2592, 2700, 3200, 3456, 3528, 3872, 3888, 4000, 4500, 4608, 5000, 5292, 5400, 5408, 5488, 6272, 6912, 7200, 8712, 8748, 9000, 9248, 9800, 10368, 10584, 10800, 10976, 11552, 12168, 12348, 12500, 12800, 13068, 13500, 14112, 15488
Offset: 1

Views

Author

Massimo Kofler, Dec 09 2024

Keywords

Comments

33075 is the smallest odd term.
The set of distinct prime factors of a term can be any set P of primes such that Product_{p in P} p/(p-1) > 2. - Robert Israel, Jan 29 2025

Examples

			72=2^3*3^2 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+8+9+12+18+24+36=123).
108=2^2*3^3 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+9+12+18+27+36+54=172).
		

Crossrefs

Intersection of A005101 and A052486.

Programs

  • Maple
    filter:= proc(n) local F, E, t; F:= ifactors(n)[2]; E:= F[..,2]; min(E)>1 and igcd(op(E))=1 and mul((t[1]^(1+t[2])-1)/(t[1]-1), t = F) > 2*n end proc:
    select(filter, [$1..10^5]); # Robert Israel, Jan 28 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; AllTrue[e, # > 1 &] && GCD @@ e == 1 && Times @@ ((p - 1/p^e)/(p - 1)) > 2]; Select[Range[16000], q] (* Amiram Eldar, Dec 09 2024 *)
Previous Showing 11-20 of 31 results. Next