cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A122869 Primes p that divide Lucas((p-1)/2), where Lucas is A000032.

Original entry on oeis.org

11, 19, 31, 59, 71, 79, 131, 139, 151, 179, 191, 199, 211, 239, 251, 271, 311, 331, 359, 379, 419, 431, 439, 479, 491, 499, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 839, 859, 911, 919, 971, 991, 1019, 1031, 1039, 1051, 1091, 1151, 1171, 1231, 1259
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

Final digit of a(n) is 1 or 9.
A002145 is the union of this sequence and A122870, Primes p that divide Lucas((p+1)/2).
Conjecture: This sequence is just the primes congruent to 11 or 19 mod 20. - Charles R Greathouse IV, May 25 2011 [The conjecture is correct. - Jianing Song, Jun 20 2025]
Note that F(p-1) = F((p-1)/2)*Lucas((p-1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence lists primes p such that p divides F(p-1) but does not divides F((p-1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 11, 19 (mod 20). - Jianing Song, Jun 20 2025

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1-1)/2-1]+Fibonacci[(#1-1)/2+1])/#1]&]
  • PARI
    lista(kmax) = {my(lucas1 = 1, lucas2 = 3, lucas3, p); for(k = 3, kmax, lucas3 = lucas1 + lucas2; p = 2*k + 1; if(isprime(p) && !(lucas3 % p), print1(p, ", ")); lucas1 = lucas2; lucas2 = lucas3);} \\ Amiram Eldar, Jun 06 2024

A086598 Number of distinct prime factors in Lucas(n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 4, 1, 2, 3, 3, 4, 4, 1, 2, 4, 3, 1, 5, 2, 4, 6, 3, 1, 4, 2, 4, 4, 3, 1, 4, 4, 2, 4, 3, 3, 6, 1, 2, 6, 2, 5, 5, 2, 2, 5, 4, 1, 4, 2, 3, 7, 2, 4, 4, 1, 2, 5, 4, 2, 6, 4, 2, 5, 3, 2, 6, 3, 3, 4, 4, 5, 4, 2, 4, 7, 4, 3, 6, 3, 4, 9
Offset: 0

Views

Author

T. D. Noe, Jul 24 2003

Keywords

Comments

Interestingly, the Lucas numbers separate the primes into three disjoint sets: (A053028) primes that do not divide any Lucas number, (A053027) primes that divide Lucas numbers of even index and (A053032) primes that divide Lucas numbers of odd index.

Crossrefs

Cf. A000204 (Lucas numbers), A086599 (number of prime factors, counting multiplicity), A086600 (number of primitive prime factors).

Programs

  • Magma
    [#PrimeDivisors(Lucas(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; Table[Length[FactorInteger[Lucas[n]]], {n, 150}]
  • PARI
    a(n)=omega(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

a(n) = Sum{d|n and n/d odd} A086600(d) + 1 if 6|n, a Mobius-like transform

Extensions

a(0)=1 prepended by Max Alekseyev, Jun 15 2025

A065156 Numbers n such that some Lucas number (A000204) is divisible by n.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 14, 18, 19, 22, 23, 27, 29, 31, 38, 41, 43, 44, 46, 47, 49, 54, 58, 59, 62, 67, 71, 76, 79, 81, 82, 83, 86, 94, 98, 101, 103, 107, 116, 118, 121, 123, 124, 127, 129, 131, 134, 139, 142, 151, 158, 161, 162, 163, 166, 167, 179, 181, 191, 199
Offset: 1

Views

Author

Dean Hickerson, Oct 18 2001

Keywords

Comments

From A.H.M. Smeets, Sep 20 2020 (Start)
For the Fibonacci numbers, each natural number divides some Fibonacci number (see A001177).
If, for some number m, m divides some Lucas number L_i (=A000204(i)), then, the smallest i satisfies i <= m. (End)

Crossrefs

Complement of A064362. Cf. A000204.

Programs

  • Mathematica
    test[ n_ ] := For[ a=1; b=3, True, t=b; b=Mod[ a+b, n ]; a=t, If[ b==0, Return[ True ] ]; If[ a==2&&b==1, Return[ False ] ] ]; Select[ Range[ 200 ], test ]
    Take[Flatten[Divisors/@LucasL[Range[200]]]//Union,70] (* Harvey P. Dale, Jun 07 2020 *)
  • Python
    a, n = 0, 0
    while n < 1000:
        a, f0, f1, i = a+1, 1, 2, 1
        if f1%a == 0:
            n = n+1
            print(n,a)
        else:
            while f0%a != 0 and i <= a:
                f0, f1, i = f0+f1, f0, i+1
            if i <= a:
                n = n+1
                print(n,a) # A.H.M. Smeets, Sep 20 2020

Formula

Equals {1,2,4} union {p^e | p in A140409 and e > 0} union {2*p^e | p in A140409 and e > 0} union {4*p | p in A053032} union {4*p*q | p, q in A053032}. - A.H.M. Smeets, Sep 20 2020

A106306 Primes that yield a simple orbit structure in 2-step recursions.

Original entry on oeis.org

2, 3, 7, 13, 17, 23, 37, 41, 43, 47, 53, 61, 67, 73, 83, 89, 97, 103, 107, 109, 113, 127, 137, 149, 157, 163, 167, 173, 193, 197, 223, 227, 233, 241, 257, 263, 269, 277, 281, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 389, 397, 401, 409, 421, 433
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

Consider the 2-step recursion x(k)=x(k-1)+x(k-2) mod n. For any of the n^2 initial conditions x(1) and x(2) in Zn, the recursion has a finite period. When n is a prime in this sequence, all of the orbits, except the one containing (0,0), have the same length.
Except for 5, this appears to be the complement of A053032, odd primes p with one 0 in Fibonacci numbers mod p. - T. D. Noe, May 03 2005
A prime p is in this sequence if either (1) the polynomial x^2-x-1 mod p has no zeros for x in [0,p-1] (see A086937) or (2) the polynomial has zeros, but none is a root of unity mod p. The first few primes in the second category are 41, 61, 89 and 109. - T. D. Noe, May 12 2005

Crossrefs

Cf. A015134 (orbits of 2-step sequences).

A140409 Prime factors of Lucas numbers.

Original entry on oeis.org

2, 3, 7, 11, 19, 23, 29, 31, 41, 43, 47, 59, 67, 71, 79, 83, 101, 103, 107, 127, 131, 139, 151, 163, 167, 179, 181, 191, 199, 211, 223, 227, 229, 239, 241, 251, 263, 271, 281, 283, 307, 311, 331, 347, 349, 359, 367, 379, 383, 401, 409, 419, 431, 439, 443, 449
Offset: 1

Views

Author

Tanya Khovanova, Jun 16 2008

Keywords

Comments

a(n) is A096362(n) in ascending order.

Crossrefs

Cf. A096362 Order in which prime factors first occur in the Lucas sequence.

Formula

Union of 2, A053027 and A053032 - T. D. Noe, Jun 21 2008

Extensions

More terms from T. D. Noe, Jun 21 2008

A189767 Least number k such that the set of numbers {Fibonacci(i) mod n, i=0..k-1} contains all possible residues of Fibonacci(i) mod n.

Original entry on oeis.org

1, 2, 4, 5, 10, 10, 13, 11, 17, 22, 9, 23, 19, 37, 20, 23, 25, 19, 17, 53, 15, 25, 37, 23, 50, 61, 53, 45, 13, 58, 29, 47, 39, 25, 77, 23, 55, 17, 47, 59, 31, 37, 65, 29, 93, 37, 25, 23, 81, 148, 67, 75, 77, 53, 19, 45, 71, 37, 57, 119, 43, 29, 45, 95, 103
Offset: 1

Views

Author

T. D. Noe, May 10 2011

Keywords

Comments

Sequence A066853 gives the number of possible residues of the sequence Fibonacci(i) mod n for i=0,1,2,.... Here we compute the smallest k required to find all A066853(n) residues in the first k terms (starting at i=0) of Fibonacci sequence (mod n). We know that k is at most A001175(n), the period of Fibonacci(i) mod n. It appears that when n is a prime in A053032, then a(n)=n-1.

Examples

			Consider n=8. The Fibonacci numbers mod 8 have period 12: 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1. The set of residues is {0, 1, 2, 3, 5, 7}. How long does it take to find all 6 residues in the sequence Fibonacci(i) mod n? The answer is 11 because 7 finally appears as Fibonacci(10) mod 8.
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A001175, A053032, A066853, A189768 (residues).

Programs

  • Maple
    F:= proc(n)
     local r, k, a,ap, t, V;
    ap:= 0: a:= 1; r:= 1;
    V:= Array(0..n-1);
    V[0]:= 1;
    V[1]:= 1;
    for k from 2 do
         t:= a + ap mod n;
         ap:= a;
         a:= t;
         if ap = 0 and a = 1 then return r +1 fi;
         if V[t] = 0 then
            r:=k;
            V[t]:= 1;
         fi
    od:
    end proc:
    F(1):= 1:
    seq(F(n),n=1..100); # Robert Israel, Dec 23 2015
  • Mathematica
    pisano[n_] := Module[{a={1,0},a0,k=0,s}, If[n==1, 1, a0=a; While[k++; s=Mod[Total[a],n]; a[[1]]=a[[2]]; a[[2]]=s; a != a0]; k]]; Table[p=pisano[n]; f=Mod[Fibonacci[Range[0,p]],n]; u=Union[f]; k=1; While[Union[Take[f,k]] != u, k++]; k, {n,100}]
Previous Showing 21-26 of 26 results.