cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A053244 Numbers n such that A053238(n) = 4.

Original entry on oeis.org

5, 29, 34, 65, 70, 94, 99, 123, 198, 227, 239, 244, 274, 280, 304, 310, 327, 332, 362, 373, 391, 402, 421, 452, 481, 492, 510, 539, 601, 612, 636, 654, 659, 719, 749, 761, 811, 816, 821, 832, 899, 904, 927, 958, 1033, 1050, 1081, 1110, 1115, 1139, 1201
Offset: 1

Views

Author

Asher Auel, Jan 10 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): f := [seq( `if`((sigma(i) > sigma(i+1)),i,print( )), i=1..8000)];
    seq( `if`(f[i+1] - f[i] = 4,i,print( )), i=1..3000);

A050944 Numbers k such that sigma(k) > sigma(k+1) > sigma(k+2) > sigma(k+3).

Original entry on oeis.org

44, 104, 116, 164, 224, 272, 296, 344, 356, 464, 512, 560, 584, 620, 704, 776, 824, 836, 860, 884, 1004, 1112, 1184, 1196, 1280, 1304, 1424, 1484, 1520, 1544, 1592, 1616, 1700, 1724, 1880, 1904, 1952, 1964, 2024, 2036, 2120, 2144, 2276, 2324, 2372, 2384, 2444
Offset: 1

Views

Author

Jud McCranie, Jan 02 2000

Keywords

Examples

			sigma(44)=84 > sigma(45)=78 > sigma(46)=72 > sigma(47)=48.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 44.

Crossrefs

Programs

Extensions

Name simplified by Sean A. Irvine, Aug 20 2021

A364657 Numbers k such that sigma(k) > sigma(k+1) > sigma(k+2).

Original entry on oeis.org

44, 45, 104, 105, 116, 117, 164, 165, 224, 225, 272, 273, 296, 297, 315, 344, 345, 356, 357, 405, 464, 465, 512, 513, 525, 560, 561, 584, 585, 620, 621, 693, 704, 705, 765, 776, 777, 824, 825, 836, 837, 860, 861, 884, 885, 945, 1004, 1005, 1112, 1113, 1125, 1155
Offset: 1

Views

Author

Seiichi Manyama, Aug 01 2023

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = sigma(n)>sigma(n+1) && sigma(n+1)>sigma(n+2);

A053227 First differences of sigma(n) that are negative.

Original entry on oeis.org

1, 4, 2, 6, 14, 13, 19, 10, 12, 29, 2, 26, 40, 15, 6, 53, 4, 48, 52, 6, 6, 24, 67, 21, 44, 48, 40, 30, 106, 43, 76, 30, 72, 121, 44, 88, 65, 42, 116, 12, 90, 122, 40, 24, 154, 15, 115, 112, 18, 30, 54, 170, 64, 134, 96, 28, 2, 36, 227, 18, 68, 184, 79, 120, 176, 132, 148
Offset: 1

Views

Author

Asher Auel, Jan 06 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq( `if`((sigma(i) > sigma(i+1)),(sigma(i) - sigma(i+1)),print( )), i=1..200);
  • Mathematica
    Abs[Select[Differences[DivisorSigma[1,Range[200]]],#<0&]] (* Harvey P. Dale, Apr 17 2022 *)

Formula

a(n) = A053222(A053226(n))

A050945 Numbers k such that sigma(k) > sigma(k+1) > sigma(k+2) > sigma(k+3) > sigma(k+4) > sigma(k+5).

Original entry on oeis.org

20021154, 28503474, 53728674, 224539314, 242917674, 304178874, 341295954, 370845474, 377692314, 443998554, 533007474, 610484874, 709445274, 855529674, 964885074, 978052074, 1069943874, 1114988874, 1167961794
Offset: 1

Views

Author

Jud McCranie, Jan 02 2000

Keywords

Comments

There are many examples of 4 consecutive numbers having decreasing values of sigma (see cross references) and there are 83 cases of 6 consecutive numbers with decreasing values of sigma < 4,293,000,000. Interestingly (and for unknown reasons) there are no examples of exactly 5 such consecutive numbers in that range! All known members of the sequence are multiples of 6 and one less than a multiple of 35.

Examples

			sigma(20021154)=40894848 > sigma(20021155)=35458560 > ... > sigma(20021159)=20021160.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 44.

Crossrefs

Extensions

Name simplified by Seiichi Manyama, Aug 03 2023

A333038 Numbers m such that sigma(m) <= sigma(m-1).

Original entry on oeis.org

5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 106, 107, 109, 111, 113, 115, 117, 118, 119, 121, 123
Offset: 1

Views

Author

Bernard Schott, Mar 06 2020

Keywords

Comments

This sequence is infinite because all primes p >= 5 are terms with sigma(p) < sigma(p-1).
The integer m is a term iff A053222(m-1) <= 0.
The numbers m such that sigma(m) = sigma(m-1) are in A231546.

Examples

			Sigma(9) = 1+3+9 = 13 < sigma(8) = 1+2+4+8 = 15 so 9 is a term.
Sigma(15) = 1+3+5+15 = 24 = sigma(14) = 1+2+7+14 = 24 so 15 is a term.
Sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62 = 96 and 63 is not a term.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004

Crossrefs

Cf. A000203, A053222, A231546 (subsequence: sigma(m) = sigma(m-1)).
Cf. A053224 (sigma(m) < sigma(m+1)), A053226 (sigma(m) > sigma(m+1)).

Programs

A364680 Smallest initial number k of n consecutive numbers satisfying sigma(k) > sigma(k+1) > ... > sigma(k+n-1).

Original entry on oeis.org

1, 4, 44, 44, 20021154, 20021154
Offset: 1

Views

Author

Seiichi Manyama, Aug 02 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n) = my(k=n); while(sigma(k)>sigma(k+1), k++); k-n+1;
    a(n) = my(k=1); while(b(k)
    				
Previous Showing 11-17 of 17 results.