cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A295503 a(n) = phi(10^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 60, 648, 6000, 64800, 466560, 6637344, 58752000, 648646704, 5890320000, 66663457344, 461894400000, 6458084523072, 60339430569600, 610154104320000, 5529599115264000, 66666634474902192, 441994921381739520, 6666666666666666660, 58301444908800000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), this sequence (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    Array[ EulerPhi[10^# - 1] &, 20] (* Robert G. Wilson v, Nov 22 2017 *)
  • PARI
    {a(n) = eulerphi(10^n-1)}

Formula

a(n) = n*A295497(n).
a(n) = A000010(A002283(n)). - Michel Marcus, Nov 25 2017

A096853 a(n) = A062401(2^n-1).

Original entry on oeis.org

1, 2, 4, 8, 16, 48, 64, 144, 288, 512, 576, 2304, 4096, 10240, 18432, 36288, 65536, 184320, 262144, 552960, 718848, 1492992, 2822400, 9123840, 13418496, 44695552, 68762880, 106168320, 109486080, 580386816, 1073741824, 2155507200, 2366668800, 6920601600, 12081954816
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ EulerPhi[ DivisorSigma[1, 2^n - 1]], {n, 33}]

Formula

a(n) = A000010(A000203(A000225(n))). - Michel Marcus, Dec 19 2013
a(n) = A000010(A075708(n)). - Amiram Eldar, Jun 04 2024

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004
a(33)-a(35) from Amiram Eldar, Jun 04 2024

A096854 a(n) = A062402(2^n-1).

Original entry on oeis.org

1, 3, 12, 15, 72, 91, 312, 255, 1240, 1860, 4123, 5080, 26208, 34200, 93600, 65535, 334368, 416560, 1420800, 1596364, 6146800, 5949696, 20485332, 23788842, 120519630, 194016600, 358132380, 458803800, 1674738000, 2166798816, 6045990912, 4294967295, 22739738112, 37862623140
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[2^n - 1]], {n, 1, 30}]
  • PARI
    a(n) = sigma(eulerphi(2^n-1)); \\ Michel Marcus, Aug 30 2019

Formula

a(n) = A000203(A053287(n)). - Amiram Eldar, Jun 04 2024

Extensions

More terms from Michel Marcus, Aug 30 2019

A096855 a(n) = A062401(2^n + 1).

Original entry on oeis.org

2, 2, 2, 12, 6, 16, 24, 80, 84, 320, 360, 864, 1320, 5456, 5184, 15744, 19800, 52800, 69120, 349520, 370080, 1036800, 1425600, 3640896, 4741632, 13989888, 27091584, 76743040, 94656000, 166387200, 412473600, 1407389952, 1420488192, 3459760128, 6502788864, 14778408960
Offset: 0

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ EulerPhi[ DivisorSigma[1, 2^n+1]], {n, 0, 33}]

Formula

a(n) = A000010(A069061(n)). - Amiram Eldar, Jun 04 2024

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004
Offset changed to 0, a(0) prepended and two more terms added by Amiram Eldar, Jun 04 2024

A096856 a(n) = A062402(2^n+1).

Original entry on oeis.org

1, 3, 7, 12, 31, 42, 124, 224, 511, 847, 1953, 2688, 12264, 18816, 29127, 72540, 131071, 195048, 558523, 1077440, 3164112, 4552020, 10890040, 10342080, 54525848, 73260781, 155671040, 318848400, 1080311232, 964580240, 3070642080, 4340711424, 13722819600, 19039027200
Offset: 0

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[2^n + 1]], {n, 0, 30}]

Formula

a(n) = A000203(A053285(n)). - Amiram Eldar, Jun 04 2024

Extensions

Offset changed to 0, a(0) prepended and three more terms added by Amiram Eldar, Jun 04 2024

A057764 Triangle T(n,k) = number of nonzero elements of multiplicative order k in Galois field GF(2^n) (n >= 1, 1 <= k <= 2^n-1).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2000

Keywords

Examples

			Table begins:
  1;
  1, 0, 2;
  1, 0, 0, 0, 0, 0, 6;
  ...
		

Crossrefs

Programs

  • Magma
    {* Order(g) : g in GF(2^6) | g ne 0 *};
  • Maple
    f:= proc(n,k) if 2^n-1 mod k = 0 then numtheory:-phi(k) else 0 fi end proc:
    seq(seq(f(n,k),k=1..2^n-1), n=1..10); # Robert Israel, Jul 21 2016
  • Mathematica
    T[n_, k_] := If[Divisible[2^n - 1, k], EulerPhi[k], 0];
    Table[T[n, k], {n, 1, 10}, {k, 1, 2^n - 1}] // Flatten (* Jean-François Alcover, Feb 07 2023, after Robert Israel *)

Formula

From Robert Israel, Jul 21 2016: (Start)
T(n,k) = A000010(k) if k is a divisor of 2^n-1, otherwise 0.
Sum_{k=1..2^n-1} T(n,k) = 2^n-1 = A000225(n).
G.f. as triangle: g(x,y) = Sum_{j>=0} x^A002326(j)*A000010(2j+1)*y^(2j+1)/(1-x^A002326(j)). (End)

Extensions

T(6,21) corrected by Robert Israel, Jul 21 2016

A092589 a(n) = -A065395(2^n).

Original entry on oeis.org

0, 1, 3, 1, 15, 5, 63, 1, 177, 89, 913, -319, 4095, 2393, 10617, 1, 65535, 8897, 262143, -44287, 729537, 543553, 4015777, -1753087, 15622785, 11162969, 46358529, -1452031, 265390977, -2270911, 1073741823, 1, 2668569153, 2862962009, 15344762817, -8238350335, 68103158337, 45811586393
Offset: 0

Views

Author

Labos Elemer, Mar 02 2004

Keywords

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]]; sf[x_] := DivisorSigma[1, EulerPhi[x]]; Table[fs[2^w]-sf[2^w], {w, 0, 65}]

Formula

a(n) = phi(2^(n+1)-1) - 2^n + 1 = A053287(n+1) - A000225(n). - Amiram Eldar, Jun 09 2024

Extensions

Offset changed to 0, a(0) prepended and name corrected by Amiram Eldar, Jun 09 2024

A056742 a(n) = phi(2^n - 1)/2.

Original entry on oeis.org

1, 3, 4, 15, 18, 63, 64, 216, 300, 968, 864, 4095, 5292, 13500, 16384, 65535, 69984, 262143, 240000, 889056, 1320352, 4105040, 3317760, 16200000, 22358700, 56733696, 66382848, 266913216, 267300000, 1073741823, 1073741824
Offset: 2

Views

Author

Robert G. Wilson v, Aug 14 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[(2^n - 1)]/2, {n, 2, 40}]
  • PARI
    a(n) = eulerphi(2^n - 1)/2; \\ Amiram Eldar, Jun 09 2024

Formula

a(n) = A000010(A000225(n))/2 = A053287(n)/2. - Amiram Eldar, Jun 09 2024

A163368 a(n) = phi(sigma(tau(n))).

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 6, 2, 6, 2, 4, 2, 6, 6, 2, 2, 4, 2, 4, 6, 6, 2, 8, 2, 6, 6, 4, 2, 8, 2, 4, 6, 6, 6, 12, 2, 6, 6, 8, 2, 8, 2, 4, 4, 6, 2, 6, 2, 4, 6, 4, 2, 8, 6, 8, 6, 6, 2, 12, 2, 6, 4, 4, 6, 8, 2, 4, 6, 8, 2, 12, 2, 6, 4, 4, 6, 8, 2, 6, 2, 6, 2, 12, 6
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(SumOfDivisors(NumberOfDivisors(n))): n in [1..80]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    with(numtheory): A163368:=n->phi(sigma(tau(n))): seq(A163368(n), n=1..150); # Wesley Ivan Hurt, Dec 19 2016
  • Mathematica
    Table[EulerPhi[DivisorSigma[1, DivisorSigma[0, n]]], {n, 100}] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    vector(50, n, eulerphi(sigma(numdiv(n)))) \\ G. C. Greubel, Dec 19 2016
    

Formula

a(1) = 1, a(p) = 2 for p = primes (A000040), a(pq) = 6 for pq = product of two distinct primes (A006881), a(pq...z) = A000010(2^(k+1)-1) = A053287(k+1) for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944).

A323616 a(n) is the largest prime factor of phi(2^n-1), where phi is Euler's totient.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 257, 3, 73, 5, 7, 31, 97, 5, 5, 13, 19, 7, 29, 11, 331, 2, 293, 257, 439, 3, 1039, 73, 389, 257, 8501, 43, 2713, 31, 37, 683, 569, 7, 5419, 5, 257, 31, 131, 19, 29, 241, 10639, 2179, 8060489, 11, 1321, 331, 1289, 17449
Offset: 1

Views

Author

Jianing Song, Jan 20 2019

Keywords

Comments

If a(n) <= 2, then a regular (2^n-1)-gon can be constructed using a straightedge and compass; if a(n) <= 3, then a regular (2^n-1)-gon can be constructed using a straightedge, compass and an angle-trisector, etc.
It appears that each value occurs only a few times (see the Example section below), but to prove this seems nearly impossible.
Although a(n) = gpf(n) for the first few n, it should more often be the case that a(n) is relatively large compared to n. It seems that gpf(phi(2^n-1)) = gpf(n) only for n = 1..16, 18, 20, 21, 25, 26, 28, 29, 32, 36, 50. See the Example section below.
Nevertheless, there are many n such that a(n) = a(2*n) (including 44 of the first 100 terms). Moreover, if phi(2^n-1) and phi(2^n+1) have exactly the same prime factors, then phi(2^(2*n)-1) = phi(2^n-1)*phi(2^n+1) is powerful, and this holds for 2*n = 4, 6, 8, 12, 14, 16, 18, 26, 32, 36, 38, 50, 60, 62, 76, 108, 122, 254. By the way, phi(2^n-1) is also powerful for n = 9, 11, 15, 21, 25, 28, and there seem to be no other such numbers n.

Examples

			In the following list, a number k such that gpf(phi(2^k-1)) = gpf(k) is denoted with a "*".
a(n) = 1: 1* (1)
a(n) = 2: 2*, 4*, 8*, 16*, 32* (5)
a(n) = 3: 3*, 6*, 9*, 12*, 18*, 36* (6)
a(n) = 5: 5*, 10*, 15*, 20*, 24, 25*, 50* (7)
a(n) = 7: 7*, 14*, 21*, 28*, 48 (5)
a(n) = 11: 11*, 30, 60 (3)
a(n) = 13: 13*, 26* (2)
a(n) = 17: (0)
a(n) = 19: 27, 54, 108 (3)
a(n) = 23: (0)
a(n) = 29: 29*, 55 (2)
a(n) = 31: 22, 44, 52 (3)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[EulerPhi[2^n-1]][[-1, 1]]; Array[a, 64] (* Amiram Eldar, Mar 02 2025 *)
  • PARI
    gpf(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    a(n) = gpf(eulerphi(2^n-1))

Formula

a(n) = A006530(A053287(n)).
Previous Showing 11-20 of 20 results.