A065874
a(n) = (7^(n+1) - (-6)^(n+1))/13.
Original entry on oeis.org
1, 1, 43, 85, 1891, 5461, 84883, 314245, 3879331, 17077621, 180009523, 897269605, 8457669571, 46142992981, 401365114963, 2339370820165, 19196705648611, 117450280095541, 923711917337203, 5856623681349925, 44652524209512451, 290630718826209301, 2166036735625732243
Offset: 0
- R. L. Graham, D. E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, 1994, p. 204.
-
n->sum(binomial(n-k, k)*(42)^k, k=0..n)
-
LinearRecurrence[{1,42},{1,1},30] (* Harvey P. Dale, Apr 30 2017 *)
-
a(n) = { (7^(n+1) - (-6)^(n+1))/13 } \\ Harry J. Smith, Nov 02 2009
A109447
Binomial coefficients C(n,k) with n-k odd, read by rows.
Original entry on oeis.org
1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1
Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1, 3;
4, 4;
1, 10, 5;
6, 20, 6;
1, 21, 35, 7;
8, 56, 56, 8;
1, 36, 126, 84, 9;
10, 120, 252, 120, 10;
-
T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20); # Alois P. Heinz, Feb 07 2014
-
Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
A128100
Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0
Triangle starts:
1;
1;
2, 1;
3, 2;
5, 5, 1;
8, 10, 3;
13, 20, 9, 1;
21, 38, 22, 4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 2, 0, 0;
5, 5, 1, 0, 0;
8, 10, 3, 0, 0, 0;
13, 20, 9, 1, 0, 0, 0;
21, 38, 22, 4, 0, 0, 0, 0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
1
2 + x
3 + 2x
5 + 5x + x^2. (End)
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH: Commun. Math. Comput. Chem, 68 (2012) 3-30. See Eq. (9). - From _N. J. A. Sloane_, Dec 23 2012
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, preprint.
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, Acta Appl. Math. 117, 2012, 93-105. - _Emeric Deutsch_, Aug 12 2014
-
G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
-
p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
Numerator[Table[Factor[p[x, n]], {n, 1, 20}]] (* Clark Kimberling, Oct 22 2014 *)
A087452
G.f.: (2-x)/((1+3x)(1-4x)); e.g.f.: exp(4x) + exp(-3x); a(n) = 4^n + (-3)^n.
Original entry on oeis.org
2, 1, 25, 37, 337, 781, 4825, 14197, 72097, 242461, 1107625, 4017157, 17308657, 65514541, 273218425, 1059392917, 4338014017, 17050729021, 69106897225, 273715645477, 1102998412177, 4387586157901, 17623567104025, 70274600998837, 281757406247137
Offset: 0
-
CoefficientList[Series[(2 - z)/((1 + 3 z) (1 - 4 z)), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{1,12},{2,1},30] (* Harvey P. Dale, Nov 06 2022 *)
-
polsym(x^2-x-12,50) \\ Charles R Greathouse IV, Jun 11 2011
Comments