A239839
Number of ordered pairs of permutation functions on n elements satisfying f(f(f(x))) = g(f(g(x))).
Original entry on oeis.org
1, 1, 4, 18, 168, 1560, 20880, 267120, 5080320, 93623040, 2184537600, 49896000000, 1451853849600, 41739720422400, 1426847092070400, 47989033956864000, 1919268439216128000, 76229151152394240000, 3471527082588364800000, 156226856133456396288000
Offset: 0
A239840
Number of ordered pairs of permutation functions (f,g) on n elements satisfying f(x) = f(g(g(x))).
Original entry on oeis.org
1, 1, 4, 24, 240, 3120, 54720, 1169280, 30804480, 950745600, 34459084800, 1424870092800, 67133032243200, 3540086232883200, 208397961547776000, 13533822947893248000, 966773828738285568000, 75334352557782269952000, 6385175803136642383872000
Offset: 0
-
a:= proc(n) a(n):= `if`(n<2, 1, n*a(n-1) +n*(n-1)^2*a(n-2)) end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2014
-
a[n_] := a[n] = n a[n-1] + n(n-1)^2 a[n-2]; a[0] = a[1] = 1;
a /@ Range[0, 20] (* Jean-François Alcover, Oct 04 2019 *)
A254529
a(n) = n! * (number of mapping patterns on n).
Original entry on oeis.org
1, 1, 6, 42, 456, 5640, 93600, 1728720, 38344320, 948931200, 26555558400, 817935148800, 27735629644800, 1020596255078400, 40642432179148800, 1737890081351424000, 79498734605402112000, 3871319396080840704000, 200017645344178421760000, 10925549584125028909056000
Offset: 0
A330200
Expansion of e.g.f. Product_{k>=1} exp(x^k) / (1 - x^k).
Original entry on oeis.org
1, 2, 9, 52, 389, 3366, 34477, 392624, 5035977, 70674634, 1085687921, 17982460332, 321298513549, 6121639481582, 124336400707989, 2674237637496616, 60799325536137617, 1454405117742700434, 36556297436871331417, 961899014831786663204
Offset: 0
-
nmax = 19; CoefficientList[Series[Product[Exp[x^k]/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (n - 1)! Sum[(DivisorSigma[1, k] + k) a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 19}]
Table[n!*Sum[LaguerreL[k, -1, -1]*PartitionsP[n-k],{k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 09 2021 *)
A362820
Number of ordered pairs of derangements on [n] that commute.
Original entry on oeis.org
1, 0, 1, 4, 33, 136, 1825, 10956, 163009, 1575568, 23894721, 280090900, 5410068961, 73066199064, 1483125027553, 25872759745756, 561027082980225, 10796395534986016, 266457543316023169, 5743345672152317988, 152031229968147150241, 3717043193920429157800, 104377807879737865769121
Offset: 0
A053529 is the corresponding sequence for all permutations.
A274539
E.g.f.: exp(sum(bell(n)*z^n/n, n=1..infinity)).
Original entry on oeis.org
1, 1, 3, 17, 155, 2079, 38629, 951187, 29979753, 1175837345, 56066617331, 3187704802281, 212628685506643, 16413606252207007, 1449425836362499605, 144977415195565990619, 16285937949513614300369, 2039447464767566886933057, 282862729890000953318773603
Offset: 0
-
a := proc(n): n!*P(n) end: P := proc(n): if n=0 then 1 else P(n):= expand((1/n)*(add(x(n-k) * P(k), k=0..n-1))) fi; end: with(combinat): x := proc(n): bell(n) end: seq(a(n), n=0..18);
-
nmax = 20; CoefficientList[Series[E^(Sum[BellB[n]*z^n/n, {n, 1, nmax}]), {z, 0, nmax}], z] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 29 2016 *)
A330074
Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k)).
Original entry on oeis.org
1, 1, 3, 14, 78, 544, 4560, 42468, 451584, 5382144, 69737760, 985265280, 15204119040, 249602065920, 4398839827200, 82834744849920, 1646970433920000, 34626184595251200, 769149445849989120, 17896198498368583680, 437123791096022016000, 11171177571932111462400
Offset: 0
-
nmax = 21; CoefficientList[Series[Product[1 - Log[1 - x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Product[(1 + Sum[x^(i j)/i, {i, 1, nmax}]), {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
A330201
Expansion of e.g.f. Product_{k>=1} exp(-x^k) / (1 - x^k).
Original entry on oeis.org
1, 0, 1, 2, 21, 44, 1045, 2694, 74473, 421784, 8776521, 52518410, 1843753021, 11476952772, 387068115421, 4277646186254, 125796357803985, 1343857519264304, 53205974734877713, 621203524858308114, 25357790175078682981, 388778926109137187420
Offset: 0
-
nmax = 21; CoefficientList[Series[Product[Exp[-x^k]/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (n - 1)! Sum[(DivisorSigma[1, k] - k) a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 21}]
A086501
Number of non-commuting permutations: number of ordered pairs g, h in Symm(n) such that gh <> hg, i.e., the subgroup is non-Abelian.
Original entry on oeis.org
0, 0, 18, 456, 13560, 510480, 25326000, 1624815360, 131671008000, 13168037030400, 1593348686899200, 229442495919436800, 38775787414703539200, 7600054444782928128000, 1710012252494048735232000
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 09 2003
A178882
Triangle T(n,k) = n!* A036040(n,k) read by rows, 1 <= k <= A000041(n).
Original entry on oeis.org
1, 2, 2, 6, 18, 6, 24, 96, 72, 144, 24, 120, 600, 1200, 1200, 1800, 1200, 120, 720, 4320, 10800, 7200, 10800, 43200, 10800, 14400, 32400, 10800, 720, 5040, 35280, 105840, 176400, 105840, 529200
Offset: 1
For row n = 4 the calculations are (1 4 3 6 1) times (24 24 24 24 24 ) yielding (24 96 72 144 24)
which sums to A137341(4) = 360.
Row n has A000041(n) entries:
1;
2,2;
6,18,6;
24,96,72,144,24;
120,600,1200,1200,1800,1200,120;
720,4320,10800,7200,10800,43200,10800,14400,32400,10800,720;
Comments