A063013
Numbers where k-th digit from right is either 0 or k.
Original entry on oeis.org
0, 1, 20, 21, 300, 301, 320, 321, 4000, 4001, 4020, 4021, 4300, 4301, 4320, 4321, 50000, 50001, 50020, 50021, 50300, 50301, 50320, 50321, 54000, 54001, 54020, 54021, 54300, 54301, 54320, 54321, 600000, 600001, 600020, 600021, 600300, 600301, 600320, 600321
Offset: 0
a(11) = 4021 since 11 is written as 1011 in binary and the 1's can then be replaced by the relevant digits.
-
a:= n-> (l-> parse(cat(seq(l[-i]*(1+nops(l)-i),
i=1..nops(l)))))(convert(n, base, 2)):
seq(a(n), n=0..2^6-1); # Alois P. Heinz, Oct 29 2018
-
FromDigits /@ (Range[9,1,-1]*# & /@ IntegerDigits[Range[0, 511], 2, 9]) (* Giovanni Resta, Oct 28 2018 *)
-
a(n) = fromdigits(Vec(Pol(binary(2*n))')); \\ Alan Michael Gómez Calderón, May 01 2025
A317055
Triangle read by rows: T(0,0) = 1; T(n,k) = 10*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 10, 100, 1, 1000, 20, 10000, 300, 1, 100000, 4000, 30, 1000000, 50000, 600, 1, 10000000, 600000, 10000, 40, 100000000, 7000000, 150000, 1000, 1, 1000000000, 80000000, 2100000, 20000, 50, 10000000000, 900000000, 28000000, 350000, 1500, 1, 100000000000, 10000000000, 360000000, 5600000, 35000, 60
Offset: 0
Triangle begins:
1;
10;
100, 1;
1000, 20;
10000, 300, 1;
100000, 4000, 30;
1000000, 50000, 600, 1;
10000000, 600000, 10000, 40;
100000000, 7000000, 150000, 1000, 1;
1000000000, 80000000, 2100000, 20000, 50;
10000000000, 900000000, 28000000, 350000, 1500, 1;
100000000000, 10000000000, 360000000, 5600000, 35000, 60;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 102
-
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 10 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
A096302
Number of combinations of two natural numbers that together have n digits.
Original entry on oeis.org
81, 1620, 24300, 324000, 4050000, 48600000, 567000000, 6480000000, 72900000000, 810000000000, 8910000000000, 97200000000000, 1053000000000000, 11340000000000000, 121500000000000000, 1296000000000000000
Offset: 2
Hagai Helman (Helman(AT)actcom.net.il), Jun 25 2004
-
[81*(n-1)*10^(n-2): n in [2..30]]; // Vincenzo Librandi, Jun 06 2011
-
f[n_] := Sum[Binomial[n - 1, i]*9^(i + 1)*i, {i, 0, n}]; Table[ a[n], {n, 2, 17}] (* Robert G. Wilson v, Jun 30 2004 *)
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Comments