A053519
Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).
Original entry on oeis.org
1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
Offset: 0
Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, Crelle, 1832, pp. 1-22.
-
for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:
-
num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)
A103360
Denominator of coefficient in the interpolation polynomial for initial values of the factorial, read by row.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 2, 6, 1, 8, 12, 8, 12, 1, 30, 24, 12, 24, 60, 1, 144, 240, 144, 48, 36, 20, 1, 280, 720, 240, 144, 240, 180, 140, 1, 5760, 10080, 960, 180, 640, 1440, 1440, 280, 1
Offset: 0
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Feb 02 2005
1; 1; 1/2*x^2-1/2*x+1; 1/3*x^3-1/2*x^2+1/6*x+1;
3/8*x^4-23/12*x^3+29/8*x^2-25/12*x+1;
11/30*x^5-79/24*x^4+131/12*x^3-353/24*x^2+403/60*x+1
A103361
Numerator of coefficient in the interpolation polynomial for initial values of the factorial, read by rows.
Original entry on oeis.org
1, 0, 1, 1, -1, 1, 1, -1, 1, 1, 3, -23, 29, -25, 1, 11, -79, 131, -353, 403, 1, 53, -1237, 4031, -3451, 3101, -749, 1, 103, -5297, 14213, -34903, 126121, -101297, 31837, 1, 2199, -100123, 106657, -119129, 1438599, -6199951, 6112397, -455481, 1
Offset: 0
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Feb 02 2005
1; 1; 1/2*x^2-1/2*x+1; 1/3*x^3-1/2*x^2+1/6*x+1;
3/8*x^4-23/12*x^3+29/8*x^2-25/12*x+1;
11/30*x^5-79/24*x^4+131/12*x^3-353/24*x^2+403/60*x+1
A354298
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.
Original entry on oeis.org
1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1
1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
Cf.
A001147,
A053557,
A061354,
A064646,
A103816,
A113012,
A120265,
A143382,
A289381,
A306858,
A354299 (denominators).
-
S:= 0: R:= NULL:
for n from 1 to 100 do
S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
R:= R, numer(S);
od:
R; # Robert Israel, Jan 10 2024
-
Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator
A353545
a(n) is the numerator of Sum_{k=1..n} 1 / (k*k!).
Original entry on oeis.org
1, 5, 47, 379, 9487, 14233, 87179, 44635753, 1205165611, 6025828181, 729125211161, 972166948343, 54765404757169, 71879593743829, 25876653747779441, 6624423359431551911, 1914458350875718742519, 51690375473644406388353, 18660225545985630712321553, 186602255459856307126125437
Offset: 1
1, 5/4, 47/36, 379/288, 9487/7200, 14233/10800, 87179/66150, ...
-
Table[Sum[1/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(ExpIntegralEi[x] - Log[x] - EulerGamma)/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
-
a(n) = numerator(sum(k=1, n, 1/(k*k!))); \\ Michel Marcus, May 26 2022
-
from math import factorial
from fractions import Fraction
def A353545(n): return sum(Fraction(1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022
A354402
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
Original entry on oeis.org
1, 3, 29, 229, 5737, 8603, 210781, 26979863, 728456581, 3642282779, 440716217519, 1762864869691, 297924162982399, 260683642609331, 15641018556560861, 4004100750479565401, 1157185116888594641129, 31243998155992054970143, 11279083334313131850347743, 112790833343131318500567523
Offset: 1
1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
-
Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
-
a(n) = numerator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
-
from math import factorial
from fractions import Fraction
def A354402(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022
A373417
Triangle T(n,k) for the number of permutations in symmetric group S_n with (n-k) fixed points and an even number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k<=n that contain an even number of parts.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 15, 20, 1, 0, 0, 0, 45, 120, 130, 1, 0, 0, 0, 105, 420, 910, 924, 1, 0, 0, 0, 210, 1120, 3640, 7392, 7413, 1, 0, 0, 0, 378, 2520, 10920, 33264, 66717, 66744, 1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476
Offset: 0
Triangle array T(n,k):
n: {k<=n}
0: {1}
1: {1, 0}
2: {1, 0, 0}
3: {1, 0, 0, 0}
4: {1, 0, 0, 0, 3}
5: {1, 0, 0, 0, 15, 20}
6: {1, 0, 0, 0, 45, 120, 130}
7: {1, 0, 0, 0, 105, 420, 910, 924}
8: {1, 0, 0, 0, 210, 1120, 3640, 7392, 7413}
9: {1, 0, 0, 0, 378, 2520, 10920, 33264, 66717, 66744}
10: {1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476}
T(n,0) = 1 due to sole permutation in S_n with n fixed points, namely the identity permutation, with 0 non-fixed point cycles, an even number. (T(0,0)=1 relies on S_0 containing an empty permutation.)
T(n,1) = 0 due to no permutations in S_n with (n-1) fixed points.
T(n,2) = T(n,3) = 0 due to only non-unity partitions of 2 and 3 being of odd length, namely the trivial partitions (2),(3).
Example:
T(4,4) = 3 since S_4 contains 3 permutations with 0 fixed points and an even number of non-fixed point cycles, namely the derangements: (12)(34),(13)(24),(14)(23).
Worked Example:
T(7,6) = 910 permutations in S_7 with 1 fixed point and an even number of non-fixed point cycles.
T(7,6) = 910 possible (4,2)- and (3,3)-cycles of 7 items.
N(n,y) = possible y-cycles of n items.
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q)
s.t. k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d)
s.t. k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(4,2)) + N(7,y=(3^2))
= (7!/(4*2)) + (7!/(3^2)/2!)
= 7! * (1/8 + 1/18)
= 5040 * (13/72)
T(7,6) = 910.
-
b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
seq(T(n), n=0..10); # Alois P. Heinz, Jun 04 2024
-
Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)), {k, 0, n}], {n, 0, 10}]
A354302
a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
A354304
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.
Original entry on oeis.org
1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0
1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
-
Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
A373418
Triangle read by rows: T(n,k) is the number of permutations in symmetric group S_n with (n-k) fixed points and an odd number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k <= n that contain an odd number of parts.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 8, 6, 0, 0, 10, 20, 30, 24, 0, 0, 15, 40, 90, 144, 135, 0, 0, 21, 70, 210, 504, 945, 930, 0, 0, 28, 112, 420, 1344, 3780, 7440, 7420, 0, 0, 36, 168, 756, 3024, 11340, 33480, 66780, 66752, 0, 0, 45, 240, 1260, 6048, 28350, 111600, 333900, 667520, 667485
Offset: 0
Triangle begins:
n: {k<=n}
0: {0}
1: {0, 0}
2: {0, 0, 1}
3: {0, 0, 3, 2}
4: {0, 0, 6, 8, 6}
5: {0, 0, 10, 20, 30, 24}
6: {0, 0, 15, 40, 90, 144, 135}
7: {0, 0, 21, 70, 210, 504, 945, 930}
8: {0, 0, 28, 112, 420, 1344, 3780, 7440, 7420}
9: {0, 0, 36, 168, 756, 3024, 11340, 33480, 66780, 66752}
10: {0, 0, 45, 240, 1260, 6048, 28350, 111600, 333900, 667520, 667485}
T(n,0) = 0 because the sole permutation in S_n with n fixed points, namely the identity permutation, has 0 non-fixed point cycles, not an odd number.
T(n,1) = 0 because there are no permutations in S_n with (n-1) fixed points.
Example:
T(3,3) = 2 since S_3 contains 3 permutations with 0 fixed points and an odd number of non-fixed point cycles, namely the derangements (123) and (132).
Worked Example:
T(7,6) = 945 permutations in S_7 with 1 fixed point and an odd number of non-fixed point cycles;
T(7,6) = 945 possible 6- and (2,2,2)-cycles of 7 items.
N(n,y) = possible y-cycles of n items;
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q) such that k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d) such that k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(6)) + N(7,y=(2^3))
= (7!/6) + (7!/(2^3)/3!)
= 7! * (1/6 + 1/48)
= 5040 * (3/16);
T(7,6) = 945.
-
b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10);
-
Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)),{k,1,n}], {n,1,10}]
Comments