cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A099795 Least common multiple of 1, 2, 3, ..., prime(n)-1.

Original entry on oeis.org

1, 2, 12, 60, 2520, 27720, 720720, 12252240, 232792560, 80313433200, 2329089562800, 144403552893600, 5342931457063200, 219060189739591200, 9419588158802421600, 3099044504245996706400, 164249358725037825439200, 9690712164777231700912800
Offset: 1

Views

Author

Ray Chandler, Oct 29 2004

Keywords

Comments

Alternative definition: a(n) = Product{i = 1..(n-1)}prime(i)^e_i, where prime(i)^e_i is the greatest power of prime(i) which does not exceed prime(n). Every term is a product of prime powers, and also of primorial powers(the greatest of which is A002110(n-1); see Example and A053589). - David James Sycamore, Oct 24 2024

Examples

			For n = 7, prime(7) = 17, using the alternative definition (see Comment), a(7) = 2^4*3^2*5^1*7^1*11^1*13^1 = 16*9*5*7*11*13 = 720720 = 24*30030 = 2^2*6*30030 = A002110(1)^2*A002110(2)*A002110(6). - _David James Sycamore_, Oct 24 2024
		

Crossrefs

Programs

  • Magma
    [Lcm([2..p-1]): p in PrimesUpTo(70)]; // Bruno Berselli, Feb 06 2015
  • Maple
    Primes:= select(isprime, [2,$3..100]):
    seq(ilcm($2..Primes[i]-1),i=1..nops(Primes)); # Robert Israel, Jul 19 2016
  • Mathematica
    LCM@@Range[#]&/@(Prime[Range[20]]-1) (* Harvey P. Dale, Jan 30 2015 *)

Formula

a(n) = (A094998(n)-1) / A099796(n).
a(n) = A038610(A000040(n)). - Anthony Browne, Jul 19 2016
Rad(a(n)) = A007947(a(n)) = A002110(n-1). - David James Sycamore, Oct 24 2024

Extensions

a(18) from Bruno Berselli, Feb 06 2015

A328475 Convert the primorial base expansion of n into its prime product form, then divide by the largest primorial which divides that product: a(n) = A111701(A276086(n)).

Original entry on oeis.org

1, 1, 3, 1, 9, 3, 5, 5, 15, 1, 45, 3, 25, 25, 75, 5, 225, 15, 125, 125, 375, 25, 1125, 75, 625, 625, 1875, 125, 5625, 375, 7, 7, 21, 7, 63, 21, 35, 35, 105, 1, 315, 3, 175, 175, 525, 5, 1575, 15, 875, 875, 2625, 25, 7875, 75, 4375, 4375, 13125, 125, 39375, 375, 49, 49, 147, 49, 441, 147, 245, 245, 735, 7, 2205, 21, 1225, 1225, 3675, 35, 11025, 105
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Crossrefs

Cf. A002110, A053589, A111701, A276086, A328476, A328399 (rgs-transform).
Cf. A143293 (indices of 1's after a(0)=1).

Programs

  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328475(n) = A111701(A276086(n));

Formula

a(n) = A111701(A276086(n)).

A328478 Divide n by the largest primorial that divides it and repeat until a fixed point is reached; a(n) is the fixed point.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 1, 9, 5, 11, 1, 13, 7, 15, 1, 17, 3, 19, 5, 21, 11, 23, 1, 25, 13, 27, 7, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 5, 41, 7, 43, 11, 45, 23, 47, 1, 49, 25, 51, 13, 53, 9, 55, 7, 57, 29, 59, 1, 61, 31, 63, 1, 65, 11, 67, 17, 69, 35, 71, 1, 73, 37, 75, 19, 77, 13, 79, 5, 81, 41, 83, 7, 85, 43, 87, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Crossrefs

Cf. A007814 (gives the number of iterations to reach a fixed point), A025487 (indices of 1's).
Cf. also A093411 for analogous sequence.

Programs

Formula

If A111701(n) == n, then a(n) = n, otherwise a(n) = a(A111701(n)).
a(n) = n / A328479(n).

Extensions

Definition clarified by N. J. A. Sloane, Jan 19 2021

A328476 Convert the primorial base expansion of n into its prime product form, then subtract the largest primorial which divides that product: a(n) = A276151(A276086(n)).

Original entry on oeis.org

0, 0, 2, 0, 8, 12, 4, 8, 14, 0, 44, 60, 24, 48, 74, 120, 224, 420, 124, 248, 374, 720, 1124, 2220, 624, 1248, 1874, 3720, 5624, 11220, 6, 12, 20, 36, 62, 120, 34, 68, 104, 0, 314, 420, 174, 348, 524, 840, 1574, 2940, 874, 1748, 2624, 5040, 7874, 15540, 4374, 8748, 13124, 26040, 39374, 78540, 48, 96, 146, 288, 440, 876, 244, 488
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Crossrefs

Cf. A143293 (indices of other zeros after a(0)=0).

Programs

  • PARI
    A276151(n) = { my(s=1); forprime(p=2, , if(n%p, return(n-s), s *= p)); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328476(n) = A276151(A276086(n));

Formula

a(n) = A276151(A276086(n)).
A276086(a(n)) = A276087(n) / A326810(n).

A328479 a(n) = n/A328478(n), where A328478(n) is obtained by repeatedly dividing n by the largest primorial that divides it until a fixed point is reached.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 6, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 30, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 6, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 60, 1, 2, 1, 64, 1, 6, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 30, 1, 4, 1, 2, 1, 96, 1, 2, 1, 4, 1, 6, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Comments

a(n) is the largest term in A025487 that divides n evenly. - Hal M. Switkay, May 04 2021

Crossrefs

Programs

Formula

a(n) = n / A328478(n).

A328580 a(n) is the largest primorial dividing A276086(n), where A276086 converts the primorial base expansion of n into its prime product form.

Original entry on oeis.org

1, 2, 1, 6, 1, 6, 1, 2, 1, 30, 1, 30, 1, 2, 1, 30, 1, 30, 1, 2, 1, 30, 1, 30, 1, 2, 1, 30, 1, 30, 1, 2, 1, 6, 1, 6, 1, 2, 1, 210, 1, 210, 1, 2, 1, 210, 1, 210, 1, 2, 1, 210, 1, 210, 1, 2, 1, 210, 1, 210, 1, 2, 1, 6, 1, 6, 1, 2, 1, 210, 1, 210, 1, 2, 1, 210, 1, 210, 1, 2, 1, 210, 1, 210, 1, 2, 1, 210, 1, 210
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Crossrefs

Programs

  • PARI
    A328580(n) = { my(i=1, p=2, pr=1); while(n && (n%p), pr *= p; n = n\p; p = nextprime(1+p)); (pr); };

Formula

a(n) = A053589(A276086(n)).
a(n) = A002110(A328570(n)-1).
a(n) = A276086(n) / A328475(n).
a(n) = A276086(n) - A328476(n).
A328476(n) / a(n) = A328475(n) - 1.

A328473 a(n) = A276156(n) - A002110(A007814(n)).

Original entry on oeis.org

0, 0, 2, 0, 6, 6, 8, 0, 30, 30, 32, 30, 36, 36, 38, 0, 210, 210, 212, 210, 216, 216, 218, 210, 240, 240, 242, 240, 246, 246, 248, 0, 2310, 2310, 2312, 2310, 2316, 2316, 2318, 2310, 2340, 2340, 2342, 2340, 2346, 2346, 2348, 2310, 2520, 2520, 2522, 2520, 2526, 2526, 2528, 2520, 2550, 2550, 2552, 2550, 2556, 2556, 2558, 0, 30030
Offset: 1

Views

Author

Antti Karttunen, Oct 18 2019

Keywords

Comments

A276156(n) converts the binary expansion of n to a number whose primorial base representation has the same digits of 0's and 1's, thus each one of its terms is a unique sum of distinct primorial numbers. This sequence is otherwise similar, but the primorial number corresponding to the least significant 1-bit of n is dropped from the sum, so the sum is not unique anymore.

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328473(n) = (A276156(n)-A002110(valuation(n,2)));

Formula

a(n) = A276156(A129760(n)).
a(n) = A276151(A276156(n)) = A276156(n) - A002110(A007814(n)).

A055770 Largest factorial number which divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 24, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 24, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 24, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 24, 1, 2, 1, 2, 1, 6
Offset: 1

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Comments

Largest m! which divides n.

Examples

			3! = 6 divides 12, so a(12) = 6.
		

Crossrefs

Cf. A000142, A055881 (values of the m's), A055926, A055874, A073575.
Cf. also A053589.

Programs

  • Mathematica
    With[{rf=Reverse[Range[7]!]},Table[SelectFirst[rf,Divisible[n,#]&],{n,120}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 05 2017 *)
  • PARI
    A055770(n) = { my(m=1, i=2); while(!(n%m), m *= i; i++); return(m/(i-1)); } \\ Antti Karttunen, Dec 19 2018

Formula

a(n) = A000142(A055881(n)). - Antti Karttunen, Dec 19 2018

Extensions

Name changed, old name moved to comments by Antti Karttunen, Dec 19 2018

A328399 Lexicographically earliest infinite sequence such that a(i) = a(j) => A328475(i) = A328475(j) for all i, j.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 4, 5, 1, 6, 2, 7, 7, 8, 4, 9, 5, 10, 10, 11, 7, 12, 8, 13, 13, 14, 10, 15, 11, 16, 16, 17, 16, 18, 17, 19, 19, 20, 1, 21, 2, 22, 22, 23, 4, 24, 5, 25, 25, 26, 7, 27, 8, 28, 28, 29, 10, 30, 11, 31, 31, 32, 31, 33, 32, 34, 34, 35, 16, 36, 17, 37, 37, 38, 19, 39, 20, 40, 40, 41, 22, 42, 23, 43, 43, 44, 25, 45, 26, 46, 46, 47, 46, 48, 47
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Comments

Restricted growth sequence transform of A328475, defined as A328475(n) = A111701(A276086(n)).

Crossrefs

Cf. A002110, A053589, A111701, A276086, A143293 (indices of 1's after a(0)=1).
Cf. also A328477.

Programs

  • PARI
    up_to = 32768;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328475(n) = A111701(A276086(n));
    v328399 = rgs_transform(vector(up_to+1, n, A328475(n-1)));
    A328399(n) = v328399[1+n];

A114562 The first occurrence of n in A111701.

Original entry on oeis.org

1, 4, 3, 8, 5, 36, 7, 16, 9, 20, 11, 72, 13, 28, 15, 32, 17, 108, 19, 40, 21, 44, 23, 144, 25, 52, 27, 56, 29, 900, 31, 64, 33, 68, 35, 216, 37, 76, 39, 80, 41, 252, 43, 88, 45, 92, 47, 288, 49, 100, 51, 104, 53, 324, 55, 112, 57, 116, 59, 1800, 61, 124, 63, 128, 65, 396, 67
Offset: 1

Views

Author

Robert G. Wilson v, Feb 04 2006

Keywords

Crossrefs

Complement of this sequence A095300.

Programs

  • Mathematica
    f[n_] := Block[{m = n, k = 1}, While[ IntegerQ[ m/Prime@k], m = m/Prime@k; k++ ]; m]; g[n_] := Block[{k = 1}, While[f@k != n, k++ ]; k]; Array[g, 67]

Formula

a(2n-1) = 2n-1; a(2n) = k*4n for some k>0, if 2n == 0 (mod 3) then k = 3, if 2n ==0 (15 mod) k = 3*5, if 2n ==0 (105 mod) k = 3*5*7, if 2n ==0 (1155 mod) k = 3*5*7*11, etc.
a(n) = n*A053589(n). - David A. Corneth, Mar 30 2021
Previous Showing 11-20 of 22 results. Next