cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A378366 Difference between n and the greatest non prime power <= n (allowing 1).

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Crossrefs

Sequences obtained by subtracting each term from n are placed in parentheses below.
For nonprime we almost have A010051 (A179278).
For prime we have A064722 (A007917).
For perfect power we have A069584 (A081676).
For squarefree we have (A070321).
For prime power we have A378457 = A276781-1 (A031218).
For nonsquarefree we have (A378033).
For non perfect power we almost have A075802 (A378363).
Subtracting from n gives (A378367).
The opposite is A378371, adding n A378372.
A000015 gives the least prime power >= n (cf. A378370 = A377282 - 1).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n, weak version A007918.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[n-NestWhile[#-1&,n,PrimePowerQ[#]&],{n,100}]

Formula

a(n) = n - A378367(n).

A378615 Number of non prime powers <= prime(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 7, 10, 13, 14, 18, 21, 22, 25, 29, 34, 35, 39, 42, 43, 48, 50, 55, 62, 65, 66, 69, 70, 73, 84, 86, 91, 92, 101, 102, 107, 112, 115, 119, 124, 125, 134, 135, 138, 139, 150, 161, 164, 165, 168, 173, 174, 182, 186, 191, 196, 197, 202, 205
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2024

Keywords

Examples

			The non prime powers counted under each term:
  n=1  n=2  n=3  n=4  n=5  n=6  n=7  n=8  n=9  n=10
  -------------------------------------------------
   1    1    1    6   10   12   15   18   22   28
                  1    6   10   14   15   21   26
                       1    6   12   14   20   24
                            1   10   12   18   22
                                 6   10   15   21
                                 1    6   14   20
                                      1   12   18
                                          10   15
                                           6   14
                                           1   12
                                               10
                                                6
                                                1
		

Crossrefs

Restriction of A356068 (first-differences A143731).
First-differences are A368748.
Maxima are A378616.
Other classes of numbers (instead of non prime powers):
- prime: A000027 (diffs A000012), restriction of A000720 (diffs A010051)
- squarefree: A071403 (diffs A373198), restriction of A013928 (diffs A008966)
- nonsquarefree: A378086 (diffs A061399), restriction of A057627 (diffs A107078)
- prime power: A027883 (diffs A366833), restriction of A025528 (diffs A010055)
- composite: A065890 (diffs A046933), restriction of A065855 (diffs A005171)
A000040 lists the primes, differences A001223
A000961 and A246655 list the prime powers, differences A057820.
A024619 lists the non prime powers, differences A375735, seconds A376599.
A080101 counts prime powers between primes (exclusive), inclusive A366833.
A361102 lists the non powers of primes, differences A375708.

Programs

  • Mathematica
    Table[Length[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}]
  • Python
    from sympy import prime, primepi, integer_nthroot
    def A378615(n): return int((p:=prime(n))-n-sum(primepi(integer_nthroot(p,k)[0]) for k in range(2,p.bit_length()))) # Chai Wah Wu, Dec 07 2024

Formula

a(n) = prime(n) - A027883(n). - Chai Wah Wu, Dec 08 2024

A379154 Prime numbers p such that the interval from p to the next prime number contains a unique perfect power.

Original entry on oeis.org

3, 13, 47, 61, 79, 97, 127, 139, 167, 193, 211, 223, 241, 251, 283, 317, 337, 359, 397, 439, 479, 509, 523, 571, 619, 673, 727, 773, 839, 887, 953, 997, 1021, 1087, 1153, 1223, 1291, 1327, 1367, 1439, 1511, 1597, 1669, 1723, 1759, 1847, 1933, 2017, 2039, 2113
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.

Examples

			The prime after 13 is 17, and the interval (13,14,15,16,17) contains only one perfect power 16, so 13 is in the sequence.
		

Crossrefs

The indices of these primes are one plus the positions of 1 in A377432.
For zero instead of one perfect power we have the primes indexed by A377436.
The indices of these primes are A377434.
Swapping "prime" with "perfect power" gives A378355, indices A378368.
For previous instead of next prime we have A378364.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A081676 gives the greatest perfect power <= n.
A116086 gives perfect powers with no primes between them and the next perfect power.
A366833 counts prime powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    S:={seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}:
    S:= sort(convert(S,list)):
    J:= select(i -> nextprime(S[i]) < S[i+1] and prevprime(S[i]) > S[i-1], [$2..nops(S)-1]):
    J:= [1,op(J)]:
    map(prevprime, S[J]); # Robert Israel, Jan 19 2025
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[1000],PrimeQ[#]&&Length[Select[Range[#,NextPrime[#]],perpowQ]]==1&]
  • PARI
    is_a379154(n) = isprime(n) && #select(x->ispower(x), [n+1..nextprime(n+1)-1])==1 \\ Hugo Pfoertner, Dec 19 2024

Formula

a(n) = A151799(A378364(n+1)).

A132657 a(n) is the product of the least prime > n^2 and the greatest prime < (n+1)^2.

Original entry on oeis.org

6, 35, 143, 391, 899, 1739, 3233, 5293, 8051, 11413, 17653, 24883, 33389, 43931, 56977, 72731, 92881, 118829, 145699, 176039, 212197, 254701, 308911, 357163, 424663, 492179, 566609, 660293, 756611, 864371, 987307, 1120697, 1257923
Offset: 1

Views

Author

Jonathan Vos Post, Nov 15 2007

Keywords

Examples

			a(1) = 6 = 2*3 = (smallest prime in [1^2,2^2]) * (largest prime in [1^2,2^2]).
a(2) = 35 = 5*7 = (smallest prime in [2^2,3^2]) * (largest prime in [2^2,3^2]).
		

Crossrefs

Programs

  • Maple
    seq(nextprime(n^2)*prevprime((n+1)^2,n=1..100); # Robert Israel, Jan 26 2020
  • Mathematica
    Table[Prime[PrimePi[n^2] + 1]*Prime[PrimePi[(n + 1)^2]], {n, 1, 40}] (* Stefan Steinerberger, Nov 20 2007 *)
    NextPrime[#[[1]]]NextPrime[#[[2]],-1]&/@Partition[Range[40]^2,2,1] (* Harvey P. Dale, Aug 27 2022 *)
  • PARI
    for(n=1,33,print1(nextprime(n^2)*precprime((n+1)^2),", ")) \\ Hugo Pfoertner, Jan 26 2020

Formula

a(n) = A007491(n) * A053001(n+1).

Extensions

More terms from Stefan Steinerberger, Nov 20 2007

A378616 Greatest non prime power <= prime(n).

Original entry on oeis.org

1, 1, 1, 6, 10, 12, 15, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 255, 262, 268, 270
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2024

Keywords

Comments

Conjecture: Equal to A006093(n) = prime(n) - 1 except at terms of A159611.

Examples

			The first number line below shows the non prime powers. The second shows the primes:
--1-------------6----------10----12----14-15-------18----20-21-22----24--
=====2==3====5=====7==========11====13==========17====19==========23=====
		

Crossrefs

For nonprime instead of non prime power we have A156037.
Restriction of A378367.
Lengths are A378615.
For nonsquarefree: A378032 (diffs A378034), restriction of A378033 (diffs A378036).
A000040 lists the primes, differences A001223
A000961 and A246655 list the prime powers, differences A057820.
A024619 lists the non prime powers, differences A375735, seconds A376599.
A080101 counts prime powers between primes (exclusive), inclusive A366833.
A361102 lists the non powers of primes, differences A375708.
Prime powers between primes:
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Table[Max[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}]

A379158 Numbers m such that the consecutive prime powers A246655(m) and A246655(m+1) are both prime.

Original entry on oeis.org

1, 4, 8, 11, 12, 16, 19, 20, 21, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2024

Keywords

Comments

Also positions of 2 in A366835.

Examples

			The 4th and 5th prime powers are 5 and 7, which are both prime, so 4 is in the sequence.
The 12th and 13th prime powers are 19 and 23, which are both prime, so 12 is in the sequence.
		

Crossrefs

Positions of adjacent primes in A246655 (prime powers).
Positions of 2 in A366835.
For just one prime we have A379155, positions of prime powers in A379157.
For no primes we have A379156, positions of prime powers in A068315.
The primes powers themselves are A379541.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],PrimeQ[v[[#]]]&&PrimeQ[v[[#+1]]]&]

Formula

A246655(a(n)) = A379541(n).

A379541 Prime numbers such that the next greatest prime power is also prime.

Original entry on oeis.org

2, 5, 11, 17, 19, 29, 37, 41, 43, 53, 59, 67, 71, 73, 83, 89, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 317, 331, 347, 349, 353
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2024

Keywords

Examples

			After 13 the next prime power is 16, which is not prime, so 13 is not in the sequence.
After 19 the next prime power is 23, which is prime, so 19 is in the sequence.
		

Crossrefs

For no primes we have A068315, positions A379156.
Lesser of adjacent primes in A246655 (prime powers).
The indices of these primes are A377286.
For just one prime we have A379157, positions A379155.
Positions in the prime powers are A379158 = positions of 2 in A366835.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    nextpripow[n_]:=NestWhile[#1+1&,n+1,!PrimePowerQ[#1]&];
    Select[Range[100],PrimeQ[#]&&PrimeQ[nextpripow[#]]&]

Formula

a(n) = A246655(A379158(n)).
Previous Showing 31-37 of 37 results.