A290761
Irregular triangle, read by rows, of coefficients of polynomials that are the "nonstandard" factor of polynomials yielding the columns (up to sign) of triangle A290053, beginning with column 3.
Original entry on oeis.org
3, 5, -6, 16, 1, 7, 16, 28, 0, 15, 225, 1265, 3707, 7120, 4900, -6480, 27648, 3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0, 63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400, 9, 531, 14010, 219106
Offset: 1
The first rows of the triangle are parsed as follows:
3, 5, -6, 16;
1, 7, 16, 28, 0;
15, 225, 1265, 3707, 7120, 4900, -6480, 27648;
3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0;
63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400;
9, 531, 14010, 219106, 2266137, 16325259, 83797380, 307998768, 802828704, 1433652560, 1651979520, 1239918336, 0.
The associated full polynomials giving the columns of triangle A290053 are then:
(1/24) * (N + 3) * (3*N^3 + 5*N^2 - 6*N + 16);
(N/48) * (N + 5)^2 * (1*N^3 + 7*N^2 + 16*N + 28);
(1/5760) * (N + 5) * (15*N^7 + 225*N^6 + 1265*N^5 + 3707*N^4 + 7120*N^3 + 4900*N^2 - 6480*N + 27648);
(N/11520) * (N + 7)^2 * (3*N^7 + 83*N^6 + 961*N^5 + 6201*N^4 + 24708*N^3 + 60700*N^2 + 87968*N + 85056); etc.
A341109
a(n) = denominator(p(n, x)) / (n!*denominator(bernoulli(n, x))), where p(n, x) = Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n) / Product_{j=1..n} (j - x) and E2(n, k) are the second-order Eulerian numbers A201637.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 96, 192, 1152, 768, 1536, 3072, 18432, 36864, 221184, 147456, 884736, 1769472, 10616832, 21233664, 637009920, 424673280, 2548039680, 5096079360, 152882380800, 61152952320, 366917713920, 81537269760, 163074539520, 326149079040, 1956894474240
Offset: 0
- András Bazsó and István Mező, On the coefficients of power sums of arithmetic progressions, J. Number Th., 153 (2015), 117-123.
- J.-L. Chabert and P.-J. Cahen, Old problems and new questions around integer-valued polynomials and factorial sequences In: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding (eds), Multiplicative Ideal Theory in Commutative Algebra. Springer, Boston, MA., 2006.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, arXiv:1705.03857 [math.NT] 2017, Amer. Math. Monthly.
Cf.
A100655,
A053657 (Minkowski),
A341107,
A341108,
A318256,
A144845,
A163176,
A201637 (Eulerian2),
A036689,
A324370,
A007947,
A324369,
A195441.
-
Epoly := proc(n, x) add(combinat:-eulerian2(n, k)*binomial(x+k, 2*n), k = 0..n) / mul(j-x, j = 1..n): simplify(expand(%)) end:
seq(denom(Epoly(n, x)) / (n!*denom(bernoulli(n, x))), n = 0..30);
-
A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k,0,n}],{p, Prime[Range[n]]}];
A144845[n_] := Denominator[Together[BernoulliB[n, x]]];
A163176[n_] := A053657[n] / n!;
Table[(n + 1) A163176[n + 1] / A144845[n], {n, 0, 30}]
-
def A341109(n): # uses[A341108, A318256]
return A341108(n)//A318256(n)
print([A341109(n) for n in (0..30)])
Original entry on oeis.org
1, 1, 2, 1, 0, 0, 21, 132, 294, 252, 21, -56, 0, 8, 0, 35, 450, 2293, 5700, 6405, 770, -3661, -240, 2320, 40, -672, 0, 0, 9555, 207480, 1889316, 9216312, 25051026, 33229560, 3678948, -35339304, -2666157, 51171120, 2178176, -49878192, -792064, 24460800, 4160, -3714816, 0
Offset: 0
The sequence of polynomials begins
Q^(3)_0=1,
Q^(3)_1=(x^4+2*x^3+x^2)/4,
Q^(3)_2=(21*x^8+132*x^7+294*x^6+252*x^5+21*x^4-56*x^3+8*x)/672,
Q^(3)_3=(35*x^12+450*x^11+2293*x^10+5700*x^9+6405*x^8+770*x^7-3661*x^6-240*x^5+2320*x^4+40x^3-672*x^2)/13440.
A342645
Triangle read by rows: T(n,k) gives n! times the coefficient of x^k in the polynomial that describes the number of permutations on x letters with major index n.
Original entry on oeis.org
1, -1, 1, -2, -1, 1, 0, -7, 0, 1, 0, -14, -13, 2, 1, 120, -46, -65, -15, 5, 1, 0, 516, -356, -165, -5, 9, 1, 5040, 1392, 266, -1421, -280, 28, 14, 1, 0, 46320, 3772, -5740, -3871, -280, 98, 20, 1, 0, 215280, 212724, -26272, -31437, -7791, 126, 222, 27, 1
Offset: 0
n\k | 0 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1;
1 | -1, 1;
2 | -2, -1, 1;
3 | 0, -7, 0, 1;
4 | 0, -14, -13, 2, 1;
5 | 120, -46, -65, -15, 5, 1;
6 | 0, 516, -356, -165, -5, 9, 1;
7 | 5040, 1392, 266, -1421, -280, 28, 14, 1;
8 | 0, 46320, 3772, -5740, -3871, -280, 98, 20, 1;
9 | 0, 215280, 212724, -26272, -31437, -7791, 126, 222, 27, 1;
For n = 4, the polynomial that describes the 4th column of A008302 is
A008302(x,4) = (-14x -13x^2 +2x^3 + x^4)/4! = Sum_{j=0..4} (T(j,4)*x^j)/4!.
-
A008302T[0, 0] := 1; A008302T[-1, k_] := 0;
A008302T[n_, k_] := (A008302T[n, k] = If[0 <= k <= n*(n - 1)/2, A008302T[n, k - 1] + A008302T[n - 1, k] - A008302T[n - 1, k - n], 0]);
A342645Row[n_] := (A342645Row[n] = Expand[n!*InterpolatingPolynomial[Table[{m, A008302T[m, n]}, {m, n, 2*n + 2}], x]]);
A342645T[n_, k_] := Coefficient[A342645Row[n], x, k];
A153359
Scaled coefficients of the M. O. Rubinstein polynomials.
Original entry on oeis.org
1, -1, 1, -2, -1, 3, -2, -1, 2, 1, -152, -78, 125, 90, 15, -216, -114, 157, 135, 35, 3, -41424, -22444, 27552, 26551, 8505, 1197, 63, -66000, -36620, 40976, 42917, 15652, 2814, 252, 9, -13037952, -7390832, 7652084, 8557940, 3414775, 714840, 83790, 5220, 135, -21995904
Offset: 0
alpha_{0}(t) = 1 / 1;
alpha_{1}(t) = (-1 + t) / 2;
alpha_{2}(t) = (-2 - t + 3t^2) / 24;
alpha_{3}(t) = (-2 - t + 2t^2 + t^3) / 48;
-
alpha[0, ] = 1; alpha[k, s_] := (s - 1)/(k + 1) - Sum[((j - (s - 1)*(k - j))/(k - j + 1))*alpha[j, s]/(k), {j, 1, k - 1}] // Expand;
a53657[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}];
row[k_] := CoefficientList[alpha[k, t]*a53657[k + 1], t];
Table[row[k], {k, 0, 7}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)
A163394
The odd part of Minkowski(n)/n!
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 9, 9, 15, 3, 9, 3, 945, 135, 27, 27, 405, 45, 8505, 1701, 66825, 6075, 18225, 6075, 995085, 76545, 8505, 1215, 18225, 1215, 841995, 841995, 6506325, 382725, 32805, 3645, 850797675, 44778825, 3444525
Offset: 0
-
a := proc(n) local L,p;
L := proc(n,p,r) local q,s,m; m:=n-r; q:=p-r; s:=0;
do if q > n then break fi; s := s+iquo(m,q);
q := q*p od; s end; mul(p^(L(n,p,1)-L(n,p,0)),
p = select(isprime,[$3..n])); end
-
L[n_, p_, r_] := Module[{q, s, m}, m = n-r; q = p-r; s = 0; While[True, If[ q > n, Break[]]; s = s + Quotient[m, q]; q = q*p]; s];
a[n_] := Product[p^(L[n, p, 1]-L[n, p, 0]), {p, Select[Range[3, n], PrimeQ] }];
Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Jun 17 2019 *)
Original entry on oeis.org
1, 6, 15, 10, 0, -1, 0, 36, 280, 795, 900, 88, -450, -20, 200, 1, -30, 0, 19656, 311220, 1991430, 6354075, 9367722, 1283100, -10854935, -1064700, 16237338, 615615, -16336320, -136500, 8189909, 8190, -1243800, 0
Offset: 0
The sequence of polynomials begins
Q^(3)_0=1,
Q^(3)_1=(6*x^5+15*x^4+10*x^3-x)/30,
Q^(3)_2=(36*x^10+280*x^9+795*x^8+900*x^7+88*x^6-450*x^5-20*x^4+200*x^3+x^2-30*x)/1800.
Comments