cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A126442 Triangular array t read by rows: t(0,k) is p(k), the number of partitions of the k-multiset {0,0,...,0} with k zeros. For 0 <= n < k, t(n, k) is the number of partitions of the k-multiset {0, 0, ..., 0, 1, 2, 3, ..., k-n} with n zeros.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 7, 11, 15, 7, 12, 21, 36, 52, 11, 19, 38, 74, 135, 203, 15, 30, 64, 141, 296, 566, 877, 22, 45, 105, 250, 592, 1315, 2610, 4140, 30, 67, 165, 426, 1098, 2752, 6393, 13082, 21147, 42, 97, 254, 696, 1940, 5317, 13960, 33645, 70631, 115975
Offset: 1

Views

Author

Alford Arnold, Jan 28 2007

Keywords

Comments

First in a series of triangular arrays which comprise subsequences of A096443(n).
The second array begins 9 16 26 29 52 92 47 98 198 371 and when the arrays are aligned as illustrated in triangle A126441 with p(n) values they sum to A035310 which counts unordered multisets.
Let t(n, k) be the number of ways to partition the k-multiset {0,0,...,0,1,2,3,4,...,k-n} with n zeros, 0 <= n < k. Then t(n, k) = sum_i = 0..k j = 0..n S(n, j) C(i, j) p(k - n - i), where S(n, j) are Stirling numbers of the second kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function.
To see this, partition [n] into j blocks; there are S(n, j) partitions. For such a partition x and for each i, there are C(i, j) ways to distribute i zeros into x, because the blocks of x are all distinct. There are p(k-n-i) ways to partition the remaining k-n-i zeros. Multiplying and summing gives the result. - George Beck, Jan 10 2011
Values are also part of A096443, A129306 and A249620. Columns are also columns of the last one of these irregular triangles. See "Partitions_of_multisets" link. - Tilman Piesk, Nov 09 2014

Examples

			This first array includes only the hook cases. A096443(9,14,16) correspond to partitions [2,2], [3,2] and [2,2,1] so these values do not appear in A126442.
The array begins:
1
2 2
3 4 5
5 7 11 15
7 12 21 36 52
		

Crossrefs

Programs

  • Mathematica
    (* The triangle is flattened to a sequence. *)
    t[n_, k_] := Sum[StirlingS2[n, j] * Binomial[-1 + i + j, i] * PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Table[ t[n, k], {k, 10}, {n, 0, k - 1}] // Flatten (* George Beck, Jan 10 2011 *)

Extensions

Definition clarified by George Beck, Jan 11 2011

A000291 Number of bipartite partitions of n white objects and 2 black ones.

Original entry on oeis.org

2, 4, 9, 16, 29, 47, 77, 118, 181, 267, 392, 560, 797, 1111, 1541, 2106, 2863, 3846, 5142, 6808, 8973, 11733, 15275, 19753, 25443, 32582, 41569, 52770, 66757, 84078, 105555, 131995, 164566, 204450, 253292, 312799, 385285, 473183, 579722, 708353, 863553
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^2 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^2}. - Joerg Arndt, Jan 01 2024

Examples

			a(2) = 9: let p = 2 and q = 3, p^2*q^2 = 36; there are 9 factorizations: (36), (18*2), (12*3), (9*4), (9*2^2), (6*6), (6*3*2), (4*3^2), (3^2*2^2).
		

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • Amarnath Murthy, "Generalization of Smarandache Factor Partition introducing Smarandache Factor Partition". Smarandache Notions Journal, 1-2-3, vol. 11, 2000.
  • Amarnath Murthy, Program for finding out the number of Smarandache Factor Partitions. Smarandache Notions Journal, Vol. 13, 2002.
  • Amarnath Murthy, e-book, MS LIT format, "Ideas on Smarandache Notions".
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.9, 1.14.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 2; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[1/(1-x)*(1 + 1/(1-x^2))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 2 then A054225(2,n) else A054225(n,2). - Reinhard Zumkeller, Nov 30 2011
From Vaclav Kotesovec, Feb 01 2016, corrected Nov 05 2016: (Start)
a(n) = A000070(n) + A000097(n).
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 83*Pi/(24*sqrt(6*n))).
(End)

Extensions

Edited by Christian G. Bower, Jan 08 2004

A060244 Triangle a(n,k) of bipartite partitions of n objects into parts >1, k of which are black.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 4, 4, 3, 2, 4, 5, 8, 8, 8, 5, 4, 4, 7, 11, 13, 13, 11, 7, 4, 7, 11, 19, 22, 26, 22, 19, 11, 7, 8, 15, 26, 35, 40, 40, 35, 26, 15, 8, 12, 22, 41, 54, 69, 70, 69, 54, 41, 22, 12, 14, 30, 56, 81, 104, 116, 116, 104, 81, 56, 30, 14, 21, 42
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2001

Keywords

Examples

			Series ends ... + 2*x^5 + 3*x^4*y + 4*x^3*y^2 + 4*x^2*y^3 + 3*x*y^4 + 2*y^5 + 2*x^4 + 2*x^3*y + 3*x^2*y^2 + 2*x*y^3 + 2*y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + 1.
1;
0, 0;
1, 1, 1;
1, 1, 1, 1;
2, 2, 3, 2, 2;
...
		

References

  • P. A. MacMahon, Memoir on symmetric functions of the roots of systems of equations, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.

Crossrefs

Programs

  • Maple
    read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=2..11): SERIES2(t1,x,y,7);
  • Mathematica
    max = 12; gf = Product[1/(1 - x^(i - j)*y^j), {i, 2, max}, {j, 0, i}]; se = Series[gf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[se, {x, 0, n}, {y, 0, k}]; Flatten[ Table[ t[n - k, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, after Maple *)

Formula

G.f.: Product_{ i=2..infinity, j=0..i} 1/(1-x^(i-j)*y^j).

Extensions

More terms from Vladeta Jovovic, Mar 23 2001
Edited by Christian G. Bower, Jan 08 2004

A000412 Number of bipartite partitions of n white objects and 3 black ones.

Original entry on oeis.org

3, 7, 16, 31, 57, 97, 162, 257, 401, 608, 907, 1325, 1914, 2719, 3824, 5313, 7316, 9973, 13495, 18105, 24132, 31938, 42021, 54948, 71484, 92492, 119120, 152686, 194887, 247693, 313613, 395547, 497154, 622688, 777424, 967525, 1200572, 1485393, 1832779, 2255317
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^3 where p and q are distinct primes.
Number of Gaussian partitions of n+3*i or 3+n*i where a "Gaussian partition" is a way of writing a Gaussian integer with nonnegative parts as a sum of Gaussian integers with nonnegative parts, imaginary numbers and real numbers. For k = 3+1*i (where i is the imaginary unit), the a(1)=7 ways to write k (where parentheses represent a complex number and a lack of them represents a sum of a real and imaginary number) would be 3+i, (3+i), 2+1+i, (2+i)+1, (1+i)+2, 1+1+1+i, (1+i)+1+1. - Yali Harrary, Nov 20 2022
a(n) is the number of multiset partitions of the multiset {r^n, s^3}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 3; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(3 + x - x^2 - 2*x^3 - x^4 + x^5)/((1-x)*(1-x^2)*(1-x^3)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 3 then A054225(3,n), otherwise a(n) = A054225(n,3). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * sqrt(n) / (2*sqrt(2)*Pi^3). - Vaclav Kotesovec, Feb 01 2016
a(n) = A000098(n) + A000070(n) + A014153(n). - Yali Harrary, Nov 20 2022

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000465 Number of bipartite partitions of n white objects and 4 black ones.

Original entry on oeis.org

5, 12, 29, 57, 109, 189, 323, 522, 831, 1279, 1941, 2876, 4215, 6066, 8644, 12151, 16933, 23336, 31921, 43264, 58250, 77825, 103362, 136371, 178975, 233532, 303268, 391831, 504069, 645520, 823419, 1046067, 1324136, 1669950, 2099104, 2629685, 3284325, 4089300
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^4 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^4}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 4; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(5 + 2*x - 3*x^3 - 5*x^4 - x^5 + 3*x^7 + x^8 - x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 4 then A054225(4,n) else A054225(n,4). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ sqrt(3) * n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000491 Number of bipartite partitions of n white objects and 5 black ones.

Original entry on oeis.org

7, 19, 47, 97, 189, 339, 589, 975, 1576, 2472, 3804, 5727, 8498, 12400, 17874, 25433, 35818, 49908, 68939, 94378, 128234, 172917, 231630, 308240, 407804, 536412, 701910, 913773, 1184022, 1527165, 1961432, 2508762, 3196473, 4057403, 5132066
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^5 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^5}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A054225.
Cf. A005380.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(243*2^n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^5*2^n, 3^5*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(7 + 5*x + 2*x^2 - 2*x^3 - 7*x^4 - 9*x^5 - 6*x^6 + x^7 + 4*x^8 + 6*x^9 + 3*x^10 + x^11 - 3*x^12 - 2*x^13 + x^14)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 5 then A054225(5,n) else A054225(n,5). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A002756 Number of bipartite partitions of n white objects and 7 black ones.

Original entry on oeis.org

15, 45, 118, 257, 522, 975, 1752, 2998, 4987, 8043, 12693, 19584, 29719, 44324, 65210, 94642, 135805, 192699, 270822, 377048, 520624, 713123, 969784, 1309646, 1757447, 2343931, 3108553, 4100220, 5380964, 7027376, 9135769, 11824507
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^7 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^7}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 7 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] :=  b[n, k] = If[n>k, 0, 1] +  If[PrimeQ[n], 0,  Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^7, p^n*q^7]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(15 + 15*x + 13*x^2 + 6*x^3 - 5*x^4 - 15*x^5 - 28*x^6 - 34*x^7 - 26*x^8 - 10*x^9 + 6*x^10 + 25*x^11 + 27*x^12 + 31*x^13 + 20*x^14 + 3*x^15 - 9*x^16 - 16*x^17 - 17*x^18 - 9*x^19 - 4*x^20 + 8*x^22 + 6*x^23 + 4*x^24 - 3*x^25 - 3*x^26 + x^27)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 7 then A054225(7,n) else A054225(n,7). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(5/2) * exp(Pi*sqrt(2*n/3)) / (140*sqrt(2)*Pi^7). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A093802 Number of distinct factorizations of 105*2^n.

Original entry on oeis.org

5, 15, 36, 74, 141, 250, 426, 696, 1106, 1711, 2593, 3852, 5635, 8118, 11548, 16231, 22577, 31092, 42447, 57464, 77213, 103009, 136529, 179830, 235514, 306751, 397506, 512607, 658030, 841020, 1070490, 1357195, 1714274, 2157539, 2706174, 3383187, 4216358
Offset: 0

Views

Author

Alford Arnold, May 19 2004

Keywords

Examples

			105*A000079 is 105, 210, 420, 840, 1680, 3360, ... and there are 15 distinct factorizations of 210 so a(1) = 15.
a(0) = 5: 105*2^0 = 105 = 3*5*7 = 3*35 = 5*21 = 7*15. - _Alois P. Heinz_, May 26 2013
		

Crossrefs

Similar sequences: 45*A000079 => A002763, [1, 3, 9, 27, 81, 243...]*A000079 => A054225, 1*A002110 => A000110, 2*A002110 => A035098, A000142 => A076716.
Column k=3 of A346426.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b((105*2^n)$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0,
         Sum[If[d > k, 0, b[n/d, d]], {d, Divisors[n][[2;;-2]]}]];
    a[n_] := b[105*2^n, 105*2^n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)

Extensions

2 more terms from Alford Arnold, Aug 29 2007
Corrected offset and extended beyond a(7) by Alois P. Heinz, May 26 2013

A201376 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of pairs.

Original entry on oeis.org

1, 1, 2, 2, 4, 9, 3, 7, 16, 31, 5, 12, 29, 57, 109, 7, 19, 47, 97, 189, 339, 11, 30, 77, 162, 323, 589, 1043, 15, 45, 118, 257, 522, 975, 1752, 2998, 22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 30, 97, 267, 608, 1279, 2472, 4571, 8043, 13715, 22652, 42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2011

Keywords

Comments

By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A201377 and A054225 give partitions of pairs into sums of distinct pairs.
Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.

Examples

			Partitions of (3,1) into positive pairs, T(3,1) = 7:
(3,1),
(3,0) + (0,1),
(2,1) + (1,0),
(2,0) + (1,1),
(2,0) + (1,0) + (0,1),
(1,1) + (1,0) + (1,0),
(1,0) + (1,0) + (1,0) + (0,1).
First ten rows of triangle:
0:                      1
1:                    1  2
2:                  2  4  9
3:                3  7  16  31
4:              5  12  29  57  109
5:            7  19  47  97  189  339
6:          11  30  77  162  323  589  1043
7:        15  45  118  257  522  975  1752  2998
8:      22  67  181  401  831  1576  2876  4987  8406
9:    30  97  267  608  1279  2472  4571  8043  13715  22652
X:  42  139  392  907  1941  3804  7128  12693  21893  36535  59521
		

Crossrefs

T(n,0) = A000041(n);
T(1,k) = A000070(k), k <= 1; T(n,1) = A000070(n), n > 1;
T(2,k) = A000291(k), k <= 2; T(n,2) = A000291(n), n > 2;
T(3,k) = A000412(k), k <= 3; T(n,3) = A000412(n), n > 3;
T(4,k) = A000465(k), k <= 4; T(n,4) = A000465(n), n > 4;
T(5,k) = A000491(k), k <= 5; T(n,5) = A000491(n), n > 5;
T(6,k) = A002755(k), k <= 6; T(n,6) = A002755(n), n > 6;
T(7,k) = A002756(k), k <= 7; T(n,7) = A002756(n), n > 7;
T(8,k) = A002757(k), k <= 8; T(n,8) = A002757(n), n > 8;
T(9,k) = A002758(k), k <= 9; T(n,9) = A002758(n), n > 9;
T(10,k) = A002759(n), k <= 10; T(n,10) = A002759(n), n > 10;
T(n,n) = A002774(n).
See A054225 for another version.

Programs

  • Haskell
    -- see link.
  • Mathematica
    max = 10; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max }, {k, 0, n}], {x, 0, 2max }, {y, 0, 2max }]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max }, {y, 0, 2max }], {x, y}]; t[n_, k_] := coes[[n+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 05 2011 *)
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n] , 1|n]}]]; t[n_, k_] := b[p^n*q^k, p^n*q^k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)

Formula

For references, programs and g.f. see A054225.

Extensions

Entry revised by N. J. A. Sloane, Nov 30 2011

A225561 Largest number m such that 1, 2, ..., m can be represented as the sum of distinct divisors of n.

Original entry on oeis.org

1, 3, 1, 7, 1, 12, 1, 15, 1, 3, 1, 28, 1, 3, 1, 31, 1, 39, 1, 42, 1, 3, 1, 60, 1, 3, 1, 56, 1, 72, 1, 63, 1, 3, 1, 91, 1, 3, 1, 90, 1, 96, 1, 7, 1, 3, 1, 124, 1, 3, 1, 7, 1, 120, 1, 120, 1, 3, 1, 168, 1, 3, 1, 127, 1, 144, 1, 7, 1, 3, 1, 195, 1, 3, 1, 7, 1, 168, 1, 186, 1, 3
Offset: 1

Views

Author

Keywords

Comments

n is called a practical number (A005153) if a(n) >= n.

Crossrefs

Programs

  • Haskell
    see Haskell link, 3.2.2
    a225561 n = length $ takeWhile (not . null) $
                map (ps [] $ a027750_row n) [1..] where
       ps qs _      0  = [qs]
       ps   []       = []
       ps qs (k:ks) m  =
          if m == 0 then [] else ps (k:qs) ks (m - k) ++ ps qs ks m
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    a[n_] := First[Complement[Range[DivisorSigma[1, n] + 1], Total /@ Subsets[Divisors[n]]]] - 1; Array[a, 100] (* Jean-François Alcover, Sep 27 2018 *)
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); g[n_] := If[(ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), ?(# > 1 &)]) == {}, n, Times @@ (Power @@@ fct[[1 ;; ind[[1, 1]] - 1]])]; a[n] := DivisorSigma[1, g[n]]; Array[a, 100] (* Amiram Eldar, Sep 27 2019 *)
  • PARI
    a(n)=my(d=divisors(n),t,v=vector(2^#d-1,i,t=vecextract(d,i); sum(j=1,#t,t[j]))); v=vecsort(v,,8); for(i=1,#v,if(v[i]!=i,return(i-1)));v[#v]
    
  • Python
    from sympy import divisors
    def A225561(n):
        c = {0}
        for d in divisors(n,generator=True):
            c |=  {a+d for a in c}
        k = 1
        while k in c:
            k += 1
        return k-1 # Chai Wah Wu, Jul 05 2023

Formula

a(n) = 1 if and only if n is odd. a(n) = 3 if and only if n in {2,10} mod 12. Otherwise a(n) >= 7.
a(n) = A030057(n)-1.
a(n) = A000203(A327832(n)). - Amiram Eldar, Sep 27 2019
Previous Showing 11-20 of 29 results. Next