cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A054985 Composite numbers x such that sigma(x+120) = sigma(x)+120.

Original entry on oeis.org

182, 203, 287, 350, 407, 558, 611, 731, 779, 803, 963, 1424, 1643, 2627, 2747, 3431, 3806, 4187, 4223, 5063, 6767, 7946, 8927, 9047, 11904, 12707, 12878, 15794, 18923, 20567, 27263, 31175, 32111, 34427, 43139, 43811, 45854, 50165, 52592, 57479
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

See also A015914, A054799, A033560.

Examples

			a(6)=558, sigma(558)+120=1248+120=1368=sigma(678)=sigma(558+120).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60000],CompositeQ[#]&&DivisorSigma[1,#]+120 == DivisorSigma[ 1,#+120]&] (* Harvey P. Dale, Nov 25 2022 *)
  • PARI
    isok(n) = !isprime(n) && (sigma(n+120) == (sigma(n) + 120)); \\ Michel Marcus, Dec 31 2013

A056774 Composite n such that phi(n+2) = phi(n)+2.

Original entry on oeis.org

6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Below 100000 no common composite solutions with sigma(n+2)=sigma(n)+2, while prime solutions are common.
phi(x)+2=phi(x+2) is equivalent to cototient(x+2)=cototient(x), so also defines closest numbers with identical value of cototients (A051953), either primes or composites.

Examples

			n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
  • PARI
    isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019

A063680 Solutions to sigma(k) + 7 = sigma(k+7).

Original entry on oeis.org

74, 531434, 387420482, 2541865828322
Offset: 1

Views

Author

Jud McCranie, Jul 28 2001

Keywords

Comments

No other solutions < 4290000000. Sequence A063679 shows how to generate more solutions, but there may be solutions other than those produced by A063679.
No others < 10^17. - Seth A. Troisi, Oct 25 2022
k or k+7 must be a square or twice a square (A028982). See comment in A015886. - Seth A. Troisi, Oct 26 2022
From Jon E. Schoenfield, Oct 26 2022: (Start)
Each of the first 4 terms of the sequence is of the form k = 9^j - 7:
74 = 9^2 - 7,
531434 = 9^6 - 7,
387420482 = 9^9 - 7,
2541865828322 = 9^13 - 7.
The next terms of this form are 9^53 - 7 and 9^82 - 7.
Does the sequence contain any terms that are not of this form?
(End)
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(74) + 7 = 121 = sigma(74+7), so 74 is in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k) + 7 == sigma(k+7); \\ Michel Marcus, Oct 25 2022

Extensions

a(4) from Seth A. Troisi, Oct 24 2022

A084293 a(n) = 2n + A054905(n).

Original entry on oeis.org

436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).

Examples

			To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
		

Crossrefs

Cf. A054905.

Formula

Composite x satisfying sigma(x-2n) = sigma(x) - 2n.

A054983 Composite numbers n such that sigma(n+24) = sigma(n) + 24.

Original entry on oeis.org

80, 95, 119, 299, 527, 962, 1247, 1479, 1739, 2783, 4307, 4958, 5240, 6015, 7878, 8342, 10379, 11639, 16967, 20687, 21439, 29294, 34547, 36917, 49022, 51959, 54707, 59807, 76127, 97319, 153242, 181427, 203318, 203822, 213419, 363302, 423999, 494882, 582902
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

Examples

			a(1) = 80, sigma(80)+24 = 186+24 = 210 = sigma(80+24) = sigma(104) = 104+52+26+13+8+4+2+1.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=200000},Select[Complement[Range[nn],Prime[Range[ PrimePi[nn]]]], DivisorSigma[1,#+24] == DivisorSigma[1,#]+24&]] (* Harvey P. Dale, Jan 12 2013 *)

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.

A217259 Numbers n such that sigma(n+1) - sigma(n-1) = 2; sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 435, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488
Offset: 1

Views

Author

Jaroslav Krizek, Mar 17 2013

Keywords

Comments

Also numbers n such that antisigma(n+1) - antisigma(n-1) = 2*n - 1.
Antisigma(n) = A024816(n) = sum of nondivisors of n.
Union of A014574 (average of twin prime pairs) and sequence 435, 8576, 8826, … (= all terms < 100000).
If n = average of twin prime pairs (q < p) then antisigma(p) - antisigma(q) = 2*n - 1 = p + q - 1.
No term found below 2*10^9 to continue sequence 435, 8576, 8826, ... - Michel Marcus, Mar 19 2013

Examples

			Number 435 is in sequence because antisigma(436) - antisigma(434) = 94496 - 93627 = 869 = 2*435 - 1.
		

Crossrefs

Equals A054799 + 1. - Michel Marcus, May 21 2018

Programs

A055036 Min[x] composite zero site for sigma(x+6^n) - sigma(x) - 6^n.

Original entry on oeis.org

104, 125, 195, 415, 2743, 2935, 3535, 19735, 22645, 108703, 977353, 1921033, 2523433, 2425175, 4227575, 85969345, 32606935, 224917033, 1362833713, 716210677, 1557843865, 6226853857, 20369543065
Offset: 1

Views

Author

Labos Elemer, Jun 01 2000

Keywords

Examples

			n = 6: d = 6^6 = 46656, a(n) = a(6) = 2935 because sigma(2935) + 46656 = 1 + 5 + 587 + 2935 + 46656 = sigma(2935 + 46656) = sigma(49591) = 1 + 101 + 491 + 49591 = 50184.
		

Crossrefs

Programs

  • Mathematica
    L = {}; Do[i = 1; While[ ! ((Plus @@ Divisors[i + 6^j] == 6^j + Plus @@ Divisors[i]) && ! PrimeQ[i]), i++ ]; L = Append[L, i], {j, 1, 11}]; L (from Vit Planocka)

Formula

a(n) = Min(x) solution for A000203(x+A000400(n)) = A000203(x) + A000400(n) Diophantine equation.

Extensions

One more term from Vit Planocka (planocka(AT)mistral.cz), Sep 23 2003
a(12)-a(23) from Donovan Johnson, Nov 30 2008
Previous Showing 11-18 of 18 results.