cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A130812 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

64, 448, 1792, 5376, 13440, 29568, 59136, 109824, 192192, 320320, 512512, 792064, 1188096, 1736448, 2480640, 3472896, 4775232, 6460608, 8614144, 11334400, 14734720, 18944640, 24111360, 30401280, 38001600, 47121984, 57996288, 70884352, 86073856, 103882240
Offset: 6

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=6) of 3 objects u,v,z, with repetition allowed, containing n-6 u's. Example: if n=6 then n-6 =(0) zero u, a(1)=64. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 5-dimensional elements in an n-cross polytope where n>=6. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3);
    seq(binomial(n,n-6)*2^6,n=6..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+5, 6)*2^6, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 21 2012 *)

Formula

a(n) = binomial(2*n,6) + binomial(n,2)*binomial(2*n-4,2) - n*binomial(2*n-2,4) - binomial(n,3).
a(n) = C(n,n-6)*2^6, n>=6. - Zerinvary Lajos, Dec 07 2007
G.f.: 64*x^6/(1-x)^7. - Colin Barker, Mar 20 2012

A172242 Number of 10-D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 22, 264, 2288, 16016, 96096, 512512, 2489344, 11202048, 47297536, 189190144, 722362368, 2648662016, 9372188672, 32133218304, 107110727680, 348109864960, 1105760747520, 3440144547840, 10501493882880, 31504481648640
Offset: 10

Views

Author

Zerinvary Lajos, Jan 29 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=8) of 3 objects: u, v, z with repetition allowed, containing exactly ten (10) u's.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 10, 10]*2^n, {n, 0, 22}]
  • Sage
    [lucas_number2(n, 2, 0)*binomial(n,10)/2^10 for n in range(10, 31)] # Zerinvary Lajos, Feb 05 2010

Formula

a(n) = A038207(n,10).
a(n) = binomial(n,10)*2^(n-10). [Corrected by R. J. Mathar, Feb 21 2010]
G.f.: -x^10/(2*x-1)^11. - Colin Barker, Nov 11 2012
a(n) = Sum_{i=10..n} binomial(i,10)*binomial(n,i). Example: for n=15, a(15) = 1*3003 + 11*1365 + 66*455 + 286*105 + 1001*15 + 3003*1 = 96096. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=10} 1/a(n) = 1879/126 - 20*log(2).
Sum_{n>=10} (-1)^n/a(n) = 393660*log(3/2) - 20111419/126. (End)

A130811 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
    seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012

A213349 7-quantum transitions in systems of N >= 7 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 16, 144, 9, 960, 180, 5280, 1980, 55, 25344, 15840, 1320, 109824, 102960, 17160, 286, 439296, 576576, 160160, 8008, 1647360, 2882880, 1201200, 120120, 1365, 5857280, 13178880, 7687680, 1281280, 43680, 19914752, 56010240
Offset: 7

Views

Author

Stanislav Sykora, Jun 13 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for septuple-quantum transitions (q = 7).
It lists the flattened triangle T(7;N,k) with rows N = 7,8,... and columns k = 0..floor((N-7)/2).

Examples

			Starting rows of the triangle:
   N | k = 0, 1, ..., floor((N-7)/2)
   7 |    1
   8 |   16
   9 |  144    9
  10 |  960  180
  11 | 5280 1980 55
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213348 (q=1 to 6), A213350 to A213352 (q=8 to 10).
Cf. A054851 (first column), A004313 (row sums).

Programs

  • Mathematica
    With[{q = 7}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    See A213343; set thisq = 7

Formula

Set q = 7 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).

A130813 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=7) of 3 objects u,v,z, with repetition allowed, containing n-7 u's. Example: if n=7 then n-7 =(0) zero u, a(1)=128. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 6-dimensional elements in an n-cross polytope where n>=7. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
    seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,7) + binomial(n,2)*binomial(2*n-4,3) - n*binomial(2*n-2,5) - (2*n-6)*binomial(n,3).
a(n) = C(n,n-7)*2^7, n>=7. - Zerinvary Lajos, Dec 07 2007
G.f.: 128*x^7/(1-x)^8. - Colin Barker, Mar 18 2012
a(n) = 128*A000580(n). a(n+1) = 2*(n+1)*a(n)/(n-6) for n >= 7. - Robert Israel, Jul 08 2015
Previous Showing 11-15 of 15 results.