cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A358578 Matula-Goebel numbers of rooted trees whose number of leaves equals their number of internal (non-leaf) nodes.

Original entry on oeis.org

2, 6, 7, 18, 20, 21, 26, 34, 37, 43, 54, 60, 63, 67, 70, 78, 88, 91, 92, 95, 102, 111, 116, 119, 122, 129, 142, 146, 151, 162, 164, 173, 180, 181, 189, 200, 201, 202, 210, 227, 234, 236, 239, 245, 260, 264, 269, 273, 276, 278, 285, 306, 308, 314, 322, 333, 337
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   2: (o)
   6: (o(o))
   7: ((oo))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  26: (o(o(o)))
  34: (o((oo)))
  37: ((oo(o)))
  43: ((o(oo)))
  54: (o(o)(o)(o))
  60: (oo(o)((o)))
  63: ((o)(o)(oo))
  67: (((ooo)))
  70: (o((o))(oo))
  78: (o(o)(o(o)))
  88: (ooo(((o))))
  91: ((oo)(o(o)))
		

Crossrefs

These trees are counted by A185650, ordered A358579.
Height instead of leaves: A358576, counted by A358587, ordered A358588.
Height instead of internals: A358577, counted by A358589, ordered A358590.
Positions of 0's in A358580.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],{},{0,Infinity}]==Count[MGTree[#],[_],{0,Infinity}]&]

Formula

A342507(a(n)) = A109129(a(n)).

A301422 Regular triangle where T(n,k) is the number of r-trees of size n with k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 19, 14, 5, 1, 0, 1, 12, 36, 40, 21, 6, 1, 0, 1, 16, 65, 102, 75, 30, 7, 1, 0, 1, 20, 106, 223, 224, 123, 40, 8, 1, 0, 1, 25, 168, 457, 604, 439, 191, 52, 9, 1, 0, 1, 30, 248, 847, 1433, 1346, 764, 276
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2018

Keywords

Comments

An r-tree (A093637) of size n > 0 is a finite sequence of r-trees with weakly decreasing sizes summing to n - 1. This is a similar construction to p-trees (A196545) except that r-trees are not required to be series-reduced and are weighted by all nodes (including the root) rather than just the leaves.

Examples

			Triangle begins:
  1
  1   0
  1   1   0
  1   2   1   0
  1   4   3   1   0
  1   6   8   4   1   0
  1   9  19  14   5   1   0
  1  12  36  40  21   6   1   0
  1  16  65 102  75  30   7   1   0
  1  20 106 223 224 123  40   8   1   0
  1  25 168 457 604 439 191  52   9   1   0
  ...
The T(6,3) = 8 r-trees: (((ooo))), (((oo)o)), (((o)oo)), (((oo))o), (((o)o)o), ((oo)(o)), (((o))oo), ((o)(o)o).
		

Crossrefs

Programs

  • Mathematica
    rtrees[n_]:=Join@@Table[Tuples[rtrees/@y],{y,IntegerPartitions[n-1]}];
    Table[Length[Select[rtrees[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); v[1]=y; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); vector(n, k, Vecrev(v[k]/y,k))}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A055290 Triangle of trees with n nodes and k leaves, 2 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 3, 4, 2, 1, 0, 1, 4, 8, 6, 3, 1, 0, 1, 5, 14, 14, 9, 3, 1, 0, 1, 7, 23, 32, 26, 12, 4, 1, 0, 1, 8, 36, 64, 66, 39, 16, 4, 1, 0, 1, 10, 54, 123, 158, 119, 60, 20, 5, 1, 0, 1, 12, 78, 219, 350, 325, 202, 83, 25, 5, 1, 0
Offset: 2

Views

Author

Christian G. Bower, May 09 2000

Keywords

Examples

			Triangle begins:
  n=2:  1
  n=3:  1   0
  n=4:  1   1   0
  n=5:  1   1   1   0
  n=6:  1   2   2   1   0
  n=7:  1   3   4   2   1   0
  n=8:  1   4   8   6   3   1   0
  n=9:  1   5  14  14   9   3   1   0
  n=10: 1   7  23  32  26  12   4   1   0
  n=11: 1   8  36  64  66  39  16   4   1   0
  n=12: 1  10  54 123 158 119  60  20   5   1   0
  n=13: 1  12  78 219 350 325 202  83  25   5   1   0
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 80, Problem 3.9.

Crossrefs

Row sums give A000055, row sums with weight k give A003228.
The labeled version is A055314.
Central column is A358107.
Left of central column is A359398.

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    T(n)={my(u=[y]); for(n=2, n, u=concat([y], EulerMT(u))); my(r=x*Ser(u), v=Vec(r*(1-x+x*y) + (substvec(r,[x,y],[x^2,y^2]) - r^2)/2)); vector(n-1, k, Vecrev(v[1+k]/y^2, k))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

G.f.: A(x, y)=(1-x+x*y)*B(x, y)+(1/2)*(B(x^2, y^2)-B(x, y)^2), where B(x, y) is g.f. of A055277.

A358589 Number of square rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 11, 17, 55, 107, 317, 720, 1938, 4803, 12707, 32311, 85168, 220879, 581112, 1522095, 4014186, 10568936, 27934075, 73826753, 195497427, 517927859, 1373858931, 3646158317, 9684878325, 25737819213, 68439951884, 182070121870, 484583900955, 1290213371950
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Comments

We say that a tree is square if it has the same height as number of leaves.

Examples

			The a(1) = 1 through a(7) = 11 trees:
  o  .  (oo)  .  ((ooo))  ((o)(oo))  (((oooo)))
                 (o(oo))  (o(o)(o))  ((o(ooo)))
                 (oo(o))             ((oo(oo)))
                                     ((ooo(o)))
                                     (o((ooo)))
                                     (o(o(oo)))
                                     (o(oo(o)))
                                     (oo((oo)))
                                     (oo(o(o)))
                                     (ooo((o)))
                                     ((o)(o)(o))
		

Crossrefs

For internals instead of height we have A185650 aerated, ranked by A358578.
These trees are ranked by A358577.
For internals instead of leaves we have A358587, ranked by A358576.
The ordered version is A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
    R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1  + exp( sum(i=1, n-1, 1/i * subst( subst( A + O(x*x^((n-1)\i)), x, x^i), y, y^i) ) )); Z += f(h, A-p)); Z}
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A358576 Matula-Goebel numbers of rooted trees whose node-height equals their number of internal (non-leaf) nodes.

Original entry on oeis.org

9, 15, 18, 21, 23, 30, 33, 35, 36, 39, 42, 46, 47, 49, 51, 57, 60, 61, 66, 70, 72, 73, 77, 78, 83, 84, 87, 91, 92, 93, 94, 95, 98, 102, 111, 113, 114, 119, 120, 122, 123, 129, 132, 133, 137, 140, 144, 146, 149, 151, 154, 156, 159, 166, 167, 168, 174, 177, 181
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
   9: ((o)(o))
  15: ((o)((o)))
  18: (o(o)(o))
  21: ((o)(oo))
  23: (((o)(o)))
  30: (o(o)((o)))
  33: ((o)(((o))))
  35: (((o))(oo))
  36: (oo(o)(o))
  39: ((o)(o(o)))
  42: (o(o)(oo))
  46: (o((o)(o)))
  47: (((o)((o))))
  49: ((oo)(oo))
  51: ((o)((oo)))
  57: ((o)(ooo))
  60: (oo(o)((o)))
  61: ((o(o)(o)))
		

Crossrefs

The version for edge-height is A209638.
Square trees are A358577, counted by A358589, ordered A358590.
The version for leaves instead of height is A358578, counted by A185650.
These trees are counted by A358587, ordered A358588.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]==Depth[MGTree[#]]-1&]

Formula

A358552(a(n)) = A342507(a(n)).

A358580 Difference between the number of leaves and the number of internal (non-leaf) nodes in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 0, -1, 1, -2, 0, 0, 2, -1, -1, -3, 1, -1, 1, -2, 3, -1, 0, 1, 0, 0, -2, -2, 2, -3, 0, -1, 2, -2, -1, -4, 4, -3, 0, -1, 1, 0, 2, -1, 1, -2, 1, 0, -1, -2, -1, -3, 3, 1, -2, -1, 1, 2, 0, -4, 3, 1, -1, -2, 0, -1, -3, 0, 5, -2, -2, 0, 1, -2, 0, -1, 2, -1, 1, -3
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The Matula-Goebel number of ((ooo(o))) is 89, and it has 4 leaves and 3 internal nodes, so a(89) = 1.
		

Crossrefs

Zeros are A358578, counted by A185650 (ordered A358579).
Positions of positive terms are counted by A358581, negative A358582.
Positions of nonnegative terms are counted by A358583, nonpositive A358584.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],{},{0,Infinity}]-Count[MGTree[n],[_],{0,Infinity}],{n,100}]

Formula

a(n) = A109129(n) - A342507(n).

A358590 Number of square ordered rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 6, 5, 36, 84, 309, 890, 3163, 9835, 32979, 108252, 360696, 1192410, 3984552, 13276769, 44371368, 148402665, 497072593, 1665557619, 5586863093, 18750662066, 62968243731, 211565969511, 711187790166, 2391640404772, 8045964959333, 27077856222546
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

We say that a tree is square if it has the same height as number of leaves.

Examples

			The a(1) = 1 through a(6) = 5 ordered trees:
  o  .  (oo)  .  ((o)oo)  ((o)(o)o)
                 ((oo)o)  ((o)(oo))
                 ((ooo))  ((o)o(o))
                 (o(o)o)  ((oo)(o))
                 (o(oo))  (o(o)(o))
                 (oo(o))
		

Crossrefs

For internals instead of height we have A000891, unordered A185650 aerated.
For internals instead of leaves we have A358588, unordered A358587.
The unordered version is A358589, ranked by A358577.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
    R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1  + 1/(1 - A + O(x^n))); Z += f(h, A-p)); Z}
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A358372 Number of nodes in the n-th standard ordered rooted tree.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The standard ordered rooted tree ranking begins:
  1: o        10: (((o))o)   19: (((o))(o))
  2: (o)      11: ((o)(o))   20: (((o))oo)
  3: ((o))    12: ((o)oo)    21: ((o)((o)))
  4: (oo)     13: (o((o)))   22: ((o)(o)o)
  5: (((o)))  14: (o(o)o)    23: ((o)o(o))
  6: ((o)o)   15: (oo(o))    24: ((o)ooo)
  7: (o(o))   16: (oooo)     25: (o(oo))
  8: (ooo)    17: ((((o))))  26: (o((o))o)
  9: ((oo))   18: ((oo)o)    27: (o(o)(o))
For example, the 25th ordered tree is (o,(o,o)) because the 24th composition is (1,4) and the 3rd composition is (1,1). Hence a(25) = 5.
		

Crossrefs

The triangle counting trees by leaves is A001263, unordered A055277.
The version for unordered trees is A061775, leaves A109129, edges A196050.
The leaves are counted by A358371.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358374 ranks ordered identity trees, counted by A032027.
A358375 ranks ordered binary trees, counted by A126120

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Count[srt[n],_,{0,Infinity}],{n,100}]

A358586 Number of ordered rooted trees with n nodes, at least half of which are leaves.

Original entry on oeis.org

1, 1, 1, 4, 7, 31, 66, 302, 715, 3313, 8398, 39095, 104006, 484706, 1337220, 6227730, 17678835, 82204045, 238819350, 1108202513, 3282060210, 15195242478, 45741281820, 211271435479, 644952073662, 2971835602526, 9183676536076, 42217430993002, 131873975875180, 604834233372884
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 7 ordered trees:
  o  (o)  (oo)  (ooo)   (oooo)
                ((o)o)  ((o)oo)
                ((oo))  ((oo)o)
                (o(o))  ((ooo))
                        (o(o)o)
                        (o(oo))
                        (oo(o))
		

Crossrefs

For equality we have A000891, unordered A185650.
Odd-indexed terms appear to be A065097.
The unordered version is A358583.
The opposite is the same, unordered A358584.
The strict case is A358585, unordered A358581.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.
A358590 counts square ordered trees, unordered A358589 (ranked by A358577).

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
  • PARI
    a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) + if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024

Formula

From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor(n/2)} A001263(n-1, k) for n >= 2.
a(2*n) = (A000108(2*n-1) + A000891(n-1))/2 for n >= 1;
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)

Extensions

a(16) onwards from Andrew Howroyd, Jan 13 2024

A358587 Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 41, 111, 282, 688, 1627, 3761, 8540, 19122, 42333, 92851, 202078, 436916, 939359, 2009781, 4281696, 9087670, 19223905, 40544951, 85284194, 178956984, 374691171, 782936761, 1632982372, 3400182458, 7068800357, 14674471611, 30422685030
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(5) = 1 through a(7) = 14 trees:
  ((o)(o))  ((o)(oo))   ((o)(ooo))
            (o(o)(o))   ((oo)(oo))
            (((o)(o)))  (o(o)(oo))
            ((o)((o)))  (oo(o)(o))
                        (((o))(oo))
                        (((o)(oo)))
                        ((o)((oo)))
                        ((o)(o(o)))
                        ((o(o)(o)))
                        (o((o)(o)))
                        (o(o)((o)))
                        ((((o)(o))))
                        (((o)((o))))
                        ((o)(((o))))
		

Crossrefs

For leaves instead of height we have A185650 aerated, ranked by A358578.
These trees are ranked by A358576.
The ordered version is A358588.
Square trees are counted by A358589, ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) - a(n-3) + 8*a(n-4) - 4*a(n-5) for n > 7.
G.f.: x^5*(x^2 - x + 1)/((x - 1)^2*(x + 1)*(2*x - 1)^2). (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023
Previous Showing 11-20 of 73 results. Next