cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A358581 Number of rooted trees with n nodes, most of which are leaves.

Original entry on oeis.org

1, 0, 1, 1, 4, 5, 20, 28, 110, 169, 663, 1078, 4217, 7169, 27979, 49191, 191440, 345771, 1341974, 2477719, 9589567, 18034670, 69612556, 132984290, 511987473, 991391707, 3807503552, 7460270591, 28585315026, 56595367747, 216381073935, 432396092153
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 20 trees:
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)
                     ((ooo))  ((oooo))  ((ooooo))
                     (o(oo))  (o(ooo))  (o(oooo))
                     (oo(o))  (oo(oo))  (oo(ooo))
                              (ooo(o))  (ooo(oo))
                                        (oooo(o))
                                        (((oooo)))
                                        ((o)(ooo))
                                        ((o(ooo)))
                                        ((oo)(oo))
                                        ((oo(oo)))
                                        ((ooo(o)))
                                        (o((ooo)))
                                        (o(o)(oo))
                                        (o(o(oo)))
                                        (o(oo(o)))
                                        (oo((oo)))
                                        (oo(o)(o))
                                        (oo(o(o)))
                                        (ooo((o)))
		

Crossrefs

For equality we have A185650 aerated, ranked by A358578.
The opposite version is A358582, non-strict A358584.
The non-strict version is A358583.
The ordered version is A358585, odd-indexed terms A065097.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
A358589 counts square trees, ranked by A358577, ordered A358590.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,0,10}]
  • PARI
    \\ See A358584 for R(n).
    seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[n\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022

Formula

A358581(n) + A358584(n) = A000081(n).
A358582(n) + A358583(n) = A000081(n).
a(n) = Sum_{k=floor(n/2)+1..n} A055277(n, k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 31 2022

A358379 Edge-height (or depth) of the n-th standard ordered rooted tree.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 1, 4, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 1, 3, 4, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 1, 3, 3, 4, 4, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The standard ordered rooted tree ranking begins:
  1: o        10: (((o))o)   19: (((o))(o))
  2: (o)      11: ((o)(o))   20: (((o))oo)
  3: ((o))    12: ((o)oo)    21: ((o)((o)))
  4: (oo)     13: (o((o)))   22: ((o)(o)o)
  5: (((o)))  14: (o(o)o)    23: ((o)o(o))
  6: ((o)o)   15: (oo(o))    24: ((o)ooo)
  7: (o(o))   16: (oooo)     25: (o(oo))
  8: (ooo)    17: ((((o))))  26: (o((o))o)
  9: ((oo))   18: ((oo)o)    27: (o(o)(o))
For example, the 52nd ordered tree is (o((o))oo) so a(52) = 3.
		

Crossrefs

Records occur at A004249.
The triangle counting trees by this statistic is A080936, unordered A034781.
Unordered version is A109082, nodes A061775, leaves A109129, edges A196050.
Leaves are counted by A358371.
Nodes are counted by A358372.
Node-height is a(n) + 1, unordered version is A358552.
A000081 counts unordered rooted trees, ranked by A358378.
A000108 counts ordered rooted trees.
A001263 counts ordered rooted trees by leaves.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Depth[srt[n]]-2,{n,100}]

A358575 Triangle read by rows where T(n,k) is the number of unlabeled n-node rooted trees with k = 0..n-1 internal (non-leaf) nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 8, 6, 1, 0, 1, 5, 14, 18, 9, 1, 0, 1, 6, 21, 39, 35, 12, 1, 0, 1, 7, 30, 72, 97, 62, 16, 1, 0, 1, 8, 40, 120, 214, 212, 103, 20, 1, 0, 1, 9, 52, 185, 416, 563, 429, 161, 25, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    1    2    1
    0    1    3    4    1
    0    1    4    8    6    1
    0    1    5   14   18    9    1
    0    1    6   21   39   35   12    1
    0    1    7   30   72   97   62   16    1
    0    1    8   40  120  214  212  103   20    1
    0    1    9   52  185  416  563  429  161   25    1
		

Crossrefs

Row sums are A000081.
Column k = n - 2 appears to be A002620.
Column k = 3 appears to be A006578.
The version for height instead of internal nodes is A034781.
Equals A055277 with rows reversed.
The ordered version is A090181 or A001263.
The central column is A185650, ordered A000891.
The left half sums to A358583, strict A358581.
The right half sums to A358584, strict A358582.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==k&]],{n,1,10},{k,0,n-1}]

A358579 Numbers k such that the k-th standard ordered rooted tree has the same number of leaves as internal (non-leaf) nodes.

Original entry on oeis.org

2, 6, 7, 9, 20, 22, 23, 26, 27, 29, 35, 41, 66, 76, 78, 79, 84, 86, 87, 90, 91, 93, 97, 102, 103, 106, 107, 109, 115, 117, 130, 136, 138, 139, 141, 146, 153, 163, 169, 193, 196, 197, 201, 226, 241, 262, 263, 296, 300, 302, 303, 308, 310, 311, 314, 315, 317
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   2: (o)
   6: (o(o))
   7: ((oo))
   9: ((o)(o))
  20: (oo((o)))
  22: (o(((o))))
  23: (((o)(o)))
  26: (o(o(o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  35: (((o))(oo))
  41: (((o(o))))
  66: (o(o)(((o))))
  76: (oo(ooo))
  78: (o(o)(o(o)))
  79: ((o(((o)))))
  84: (oo(o)(oo))
  86: (o(o(oo)))
		

Crossrefs

These ordered trees are counted by A000891.
The unordered version is A358578, counted by A185650.
Height instead of leaves: counted by A358588, unordered A358576.
Height instead of internals: counted by A358590, unordered A358577.
Standard ordered tree number statistics: A358371, A358372, A358379, A358553.
A000081 counts rooted trees, ordered A000108.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],Count[srt[#],{},{0,Infinity}]==Count[srt[#],[_],{0,Infinity}]&]

Formula

A358371(a(n)) = A358553(a(n)).

A358592 Matula-Goebel numbers of rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.

Original entry on oeis.org

18, 21, 60, 70, 78, 91, 92, 95, 102, 111, 119, 122, 129, 146, 151, 181, 201, 227, 264, 269, 308, 348, 376, 406, 418, 426, 452, 492, 497, 519, 551, 562, 574, 583, 596, 606, 659, 664, 668, 698, 707, 708, 717, 779, 794, 796, 809, 826, 834, 911, 932, 934, 942, 958
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   18: (o(o)(o))
   21: ((o)(oo))
   60: (oo(o)((o)))
   70: (o((o))(oo))
   78: (o(o)(o(o)))
   91: ((oo)(o(o)))
   92: (oo((o)(o)))
   95: (((o))(ooo))
  102: (o(o)((oo)))
  111: ((o)(oo(o)))
  119: ((oo)((oo)))
  122: (o(o(o)(o)))
  129: ((o)(o(oo)))
  146: (o((o)(oo)))
  151: ((oo(o)(o)))
  181: ((o(o)(oo)))
  201: ((o)((ooo)))
  227: (((oo)(oo)))
		

Crossrefs

Any number of leaves: A358576, counted by A358587 (ordered A358588).
Any number of internals: A358577, counted by A358589, ordered A358590.
Any height: A358578, ordered A358579, counted by A185650.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]==Count[MGTree[#],{},{0,Infinity}]==Depth[MGTree[#]]-1&]

Formula

A358552(a(n)) = A342507(a(n)) = A109129(a(n)).

A301342 Regular triangle where T(n,k) is the number of rooted identity trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 4, 1, 0, 0, 0, 1, 6, 5, 0, 0, 0, 0, 1, 9, 13, 2, 0, 0, 0, 0, 1, 12, 28, 11, 0, 0, 0, 0, 0, 1, 16, 53, 40, 3, 0, 0, 0, 0, 0, 1, 20, 91, 109, 26, 0, 0, 0, 0, 0, 0, 1, 25, 146, 254, 116, 6, 0, 0, 0, 0, 0, 0, 1, 30, 223, 524, 387, 61, 0, 0, 0, 0, 0, 0, 0, 1, 36
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1   0
1   0   0
1   1   0   0
1   2   0   0   0
1   4   1   0   0   0
1   6   5   0   0   0   0
1   9  13   2   0   0   0   0
1  12  28  11   0   0   0   0   0
1  16  53  40   3   0   0   0   0   0
1  20  91 109  26   0   0   0   0   0   0
1  25 146 254 116   6   0   0   0   0   0   0
1  30 223 524 387  61   0   0   0   0   0   0   0
The T(6,2) = 4 rooted identity trees: (((o(o)))), ((o((o)))), (o(((o)))), ((o)((o))).
		

Crossrefs

Programs

  • Mathematica
    irut[n_]:=irut[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[irut/@c]],UnsameQ@@#&]]/@IntegerPartitions[n-1]];
    Table[Length[Select[irut[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]

A358588 Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Examples

			The a(5) = 1 and a(6) = 8 ordered trees:
  ((o)(o))  ((o)(o)o)
            ((o)(oo))
            ((o)o(o))
            ((oo)(o))
            (o(o)(o))
            (((o))(o))
            (((o)(o)))
            ((o)((o)))
		

Crossrefs

For leaves instead of height we have A000891, unordered A185650 aerated.
The unordered version is A358587, ranked by A358576.
For leaves instead of internal nodes we have A358590, unordered A358589.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358590.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 9*a(n-1) - 32*a(n-2) + 58*a(n-3) - 58*a(n-4) + 32*a(n-5) - 9*a(n-6) + a(n-7) for n > 7.
G.f.: x^5*(-x^2 + x - 1)/((x - 1)^3*(x^2 - 3*x + 1)^2). (End)

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A301345 Regular triangle where T(n,k) is the number of transitive rooted trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 2, 4, 1, 0, 0, 0, 0, 3, 4, 5, 1, 0, 0, 0, 0, 2, 6, 6, 6, 1, 0, 0, 0, 0, 1, 6, 10, 9, 7, 1, 0, 0, 0, 0, 1, 5, 12, 16, 12, 8, 1, 0, 0, 0, 0, 0, 4, 13, 22, 23, 16, 9, 1, 0, 0, 0, 0, 0, 3, 14, 27, 36, 32, 20, 10, 1, 0, 0, 0, 0, 0, 2, 11
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1   0
0   1   0
0   1   1   0
0   0   2   1   0
0   0   1   3   1   0
0   0   1   2   4   1   0
0   0   0   3   4   5   1   0
0   0   0   2   6   6   6   1   0
0   0   0   1   6  10   9   7   1   0
0   0   0   1   5  12  16  12   8   1   0
The T(9,5) = 6 transitive rooted trees: (o(o)(oo(o))), (o((oo))(oo)), (oo(o)(o(o))), (o(o)(o)(oo)), (ooo(o)((o))), (oo(o)(o)(o)).
		

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    trat[n_]:=Select[rut[n],Complement[Union@@#,#]==={}&];
    Table[Length[Select[trat[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]

A358729 Difference between the number of nodes and the node-height of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 1, 3, 2, 2, 3, 1, 2, 3, 3, 2, 4, 3, 1, 3, 0, 4, 2, 2, 3, 4, 2, 3, 3, 3, 1, 4, 2, 2, 4, 3, 2, 4, 4, 4, 3, 3, 3, 5, 3, 4, 4, 2, 1, 4, 3, 1, 5, 5, 4, 3, 2, 3, 4, 4, 2, 5, 3, 3, 5, 4, 3, 4, 1, 4, 6, 2, 2, 5, 4, 3, 3, 3, 3, 5, 4, 4, 2, 3, 4, 5, 3, 5, 4, 5, 2, 4, 4, 4, 5, 4, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Because the number of distinct terminal subtrees of the rooted tree with Matula-Goebel number n, i.e., A317713(n) (= 1+A324923(n)), is always at least one larger than the depth of the same tree (= A109082(n)), it follows that a(n) >= A366386(n) for all n. - Antti Karttunen, Oct 23 2023

Examples

			The tree (oo(oo(o))) with Matula-Goebel number 148 has 8 nodes and node-height 4, so a(148) = 4.
		

Crossrefs

Positions of 0's are A007097.
Positions of first appearances are A358730.
Positions of 1's are A358731.
Other differences: A358580, A358724, A358726.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],_,{0,Infinity}]-(Depth[MGTree[n]]-1),{n,100}]
  • PARI
    A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs,t,i); pfs=factor(n); pfs[,1]=apply(t->A061775(t),pfs[,1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i,1]*pfs[i,2])}));
    A358552(n) = { my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); (1+d); }; \\ (after program given in A109082 by Kevin Ryde, Sep 21 2020)
    A358729(n) = (A061775(n)-A358552(n)); \\ Antti Karttunen, Oct 23 2023

Formula

a(n) = A061775(n) - A358552(n).
a(n) = A196050(n) - A109082(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A301364 Regular triangle where T(n,k) is the number of enriched p-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 4, 5, 1, 2, 6, 11, 12, 1, 3, 10, 26, 38, 34, 1, 3, 13, 39, 87, 117, 92, 1, 4, 19, 69, 181, 339, 406, 277, 1, 4, 23, 95, 303, 707, 1198, 1311, 806, 1, 5, 30, 143, 514, 1430, 2970, 4525, 4522, 2500, 1, 5, 35, 184, 762, 2446, 6124, 11627
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			Triangle begins:
  1
  1   1
  1   1   2
  1   2   4   5
  1   2   6  11  12
  1   3  10  26  38  34
  1   3  13  39  87 117  92
  1   4  19  69 181 339 406 277
  ...
The T(5,4) = 11 enriched p-trees: (((21)1)1), ((2(11))1), (((11)2)1), ((211)1), ((21)(11)), (((11)1)2), ((111)2), ((21)11), (2(11)1), ((11)21), (2111).
		

Crossrefs

Programs

  • Mathematica
    eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[Select[eptrees[n],Count[#,_Integer,{-1}]===k&]],{n,8},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); apply(p->Vecrev(p/y), v)}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018
Previous Showing 21-30 of 73 results. Next