cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A185650 a(n) is the number of rooted trees with 2n vertices n of whom are leaves.

Original entry on oeis.org

1, 2, 8, 39, 214, 1268, 7949, 51901, 349703, 2415348, 17020341, 121939535, 885841162, 6511874216, 48359860685, 362343773669, 2736184763500, 20805175635077, 159174733727167, 1224557214545788, 9467861087020239, 73534456468877012, 573484090227222260
Offset: 1

Views

Author

Stepan Orevkov, Aug 29 2013

Keywords

Examples

			From _Gus Wiseman_, Nov 27 2022: (Start)
The a(1) = 1 through a(3) = 8 rooted trees:
  (o)  ((oo))  (((ooo)))
       (o(o))  ((o)(oo))
               ((o(oo)))
               ((oo(o)))
               (o((oo)))
               (o(o)(o))
               (o(o(o)))
               (oo((o)))
(End)
		

Crossrefs

The ordered version is A000891, ranked by A358579.
This is the central column of A055277.
These trees are ranked by A358578.
For height = internals we have A358587.
Square trees are counted by A358589.
A000081 counts rooted trees, ordered A000108.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    terms = 23;
    m = 2 terms;
    T[, ] = 0;
    Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}];
    cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x];
    Table[cc[[2n+1, n+1]], {n, 1, terms}] (* Jean-François Alcover, Sep 14 2018 *)
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==n/2&]],{n,2,10,2}] (* Gus Wiseman, Nov 27 2022 *)
  • PARI
    \\ here R is A055277 as vector of polynomials
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    {my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k],k))} \\ Andrew Howroyd, May 21 2018

Extensions

Terms a(20) and beyond from Andrew Howroyd, May 21 2018

A342507 Number of internal nodes in rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 3, 3, 4, 2, 3, 2, 4, 1, 3, 3, 2, 3, 3, 4, 4, 2, 5, 3, 4, 2, 4, 4, 5, 1, 5, 3, 4, 3, 3, 2, 4, 3, 4, 3, 3, 4, 5, 4, 5, 2, 3, 5, 4, 3, 2, 4, 6, 2, 3, 4, 4, 4, 4, 5, 4, 1, 5, 5, 3, 3, 5, 4, 4, 3, 4, 3, 6, 2, 5, 4, 5, 3, 5, 4, 5, 3, 5, 3, 5, 4, 3, 5, 4, 4, 6, 5, 4, 2, 6, 3, 6, 5
Offset: 1

Views

Author

François Marques, Mar 14 2021

Keywords

Comments

The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product_{T_i} prime(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it. (Cf. A061773 for illustration.)

Examples

			a(7) = 2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = 1 because the rooted tree with Matula-Goebel number 2^m is the star tree with m edges.
		

Crossrefs

Other statistics are: A061775 (nodes), A109082 (edge-height), A109129 (leaves), A196050 (edges), A358552 (node-height).
An ordered version is A358553.
Positions of first appearances are A358554.
A000081 counts rooted trees, ordered A000108.
A358575 counts rooted trees by nodes and internals.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],[_],{0,Infinity}],{n,100}] (* Gus Wiseman, Nov 28 2022 *)
  • PARI
    A342507(n) = if( n==1, 0, my(f=factor(n)); 1+sum(k=1,matsize(f)[1],A342507(primepi(f[k,1]))*f[k,2]));

Formula

a(1)=0 and a(n) = A061775(n) - A109129(n) for n > 1.

A358589 Number of square rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 11, 17, 55, 107, 317, 720, 1938, 4803, 12707, 32311, 85168, 220879, 581112, 1522095, 4014186, 10568936, 27934075, 73826753, 195497427, 517927859, 1373858931, 3646158317, 9684878325, 25737819213, 68439951884, 182070121870, 484583900955, 1290213371950
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Comments

We say that a tree is square if it has the same height as number of leaves.

Examples

			The a(1) = 1 through a(7) = 11 trees:
  o  .  (oo)  .  ((ooo))  ((o)(oo))  (((oooo)))
                 (o(oo))  (o(o)(o))  ((o(ooo)))
                 (oo(o))             ((oo(oo)))
                                     ((ooo(o)))
                                     (o((ooo)))
                                     (o(o(oo)))
                                     (o(oo(o)))
                                     (oo((oo)))
                                     (oo(o(o)))
                                     (ooo((o)))
                                     ((o)(o)(o))
		

Crossrefs

For internals instead of height we have A185650 aerated, ranked by A358578.
These trees are ranked by A358577.
For internals instead of leaves we have A358587, ranked by A358576.
The ordered version is A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
    R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1  + exp( sum(i=1, n-1, 1/i * subst( subst( A + O(x*x^((n-1)\i)), x, x^i), y, y^i) ) )); Z += f(h, A-p)); Z}
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A358590 Number of square ordered rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 6, 5, 36, 84, 309, 890, 3163, 9835, 32979, 108252, 360696, 1192410, 3984552, 13276769, 44371368, 148402665, 497072593, 1665557619, 5586863093, 18750662066, 62968243731, 211565969511, 711187790166, 2391640404772, 8045964959333, 27077856222546
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

We say that a tree is square if it has the same height as number of leaves.

Examples

			The a(1) = 1 through a(6) = 5 ordered trees:
  o  .  (oo)  .  ((o)oo)  ((o)(o)o)
                 ((oo)o)  ((o)(oo))
                 ((ooo))  ((o)o(o))
                 (o(o)o)  ((oo)(o))
                 (o(oo))  (o(o)(o))
                 (oo(o))
		

Crossrefs

For internals instead of height we have A000891, unordered A185650 aerated.
For internals instead of leaves we have A358588, unordered A358587.
The unordered version is A358589, ranked by A358577.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
    R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1  + 1/(1 - A + O(x^n))); Z += f(h, A-p)); Z}
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A358586 Number of ordered rooted trees with n nodes, at least half of which are leaves.

Original entry on oeis.org

1, 1, 1, 4, 7, 31, 66, 302, 715, 3313, 8398, 39095, 104006, 484706, 1337220, 6227730, 17678835, 82204045, 238819350, 1108202513, 3282060210, 15195242478, 45741281820, 211271435479, 644952073662, 2971835602526, 9183676536076, 42217430993002, 131873975875180, 604834233372884
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 7 ordered trees:
  o  (o)  (oo)  (ooo)   (oooo)
                ((o)o)  ((o)oo)
                ((oo))  ((oo)o)
                (o(o))  ((ooo))
                        (o(o)o)
                        (o(oo))
                        (oo(o))
		

Crossrefs

For equality we have A000891, unordered A185650.
Odd-indexed terms appear to be A065097.
The unordered version is A358583.
The opposite is the same, unordered A358584.
The strict case is A358585, unordered A358581.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.
A358590 counts square ordered trees, unordered A358589 (ranked by A358577).

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
  • PARI
    a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) + if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024

Formula

From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor(n/2)} A001263(n-1, k) for n >= 2.
a(2*n) = (A000108(2*n-1) + A000891(n-1))/2 for n >= 1;
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)

Extensions

a(16) onwards from Andrew Howroyd, Jan 13 2024

A358587 Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 41, 111, 282, 688, 1627, 3761, 8540, 19122, 42333, 92851, 202078, 436916, 939359, 2009781, 4281696, 9087670, 19223905, 40544951, 85284194, 178956984, 374691171, 782936761, 1632982372, 3400182458, 7068800357, 14674471611, 30422685030
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(5) = 1 through a(7) = 14 trees:
  ((o)(o))  ((o)(oo))   ((o)(ooo))
            (o(o)(o))   ((oo)(oo))
            (((o)(o)))  (o(o)(oo))
            ((o)((o)))  (oo(o)(o))
                        (((o))(oo))
                        (((o)(oo)))
                        ((o)((oo)))
                        ((o)(o(o)))
                        ((o(o)(o)))
                        (o((o)(o)))
                        (o(o)((o)))
                        ((((o)(o))))
                        (((o)((o))))
                        ((o)(((o))))
		

Crossrefs

For leaves instead of height we have A185650 aerated, ranked by A358578.
These trees are ranked by A358576.
The ordered version is A358588.
Square trees are counted by A358589, ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) - a(n-3) + 8*a(n-4) - 4*a(n-5) for n > 7.
G.f.: x^5*(x^2 - x + 1)/((x - 1)^2*(x + 1)*(2*x - 1)^2). (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A358581 Number of rooted trees with n nodes, most of which are leaves.

Original entry on oeis.org

1, 0, 1, 1, 4, 5, 20, 28, 110, 169, 663, 1078, 4217, 7169, 27979, 49191, 191440, 345771, 1341974, 2477719, 9589567, 18034670, 69612556, 132984290, 511987473, 991391707, 3807503552, 7460270591, 28585315026, 56595367747, 216381073935, 432396092153
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 20 trees:
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)
                     ((ooo))  ((oooo))  ((ooooo))
                     (o(oo))  (o(ooo))  (o(oooo))
                     (oo(o))  (oo(oo))  (oo(ooo))
                              (ooo(o))  (ooo(oo))
                                        (oooo(o))
                                        (((oooo)))
                                        ((o)(ooo))
                                        ((o(ooo)))
                                        ((oo)(oo))
                                        ((oo(oo)))
                                        ((ooo(o)))
                                        (o((ooo)))
                                        (o(o)(oo))
                                        (o(o(oo)))
                                        (o(oo(o)))
                                        (oo((oo)))
                                        (oo(o)(o))
                                        (oo(o(o)))
                                        (ooo((o)))
		

Crossrefs

For equality we have A185650 aerated, ranked by A358578.
The opposite version is A358582, non-strict A358584.
The non-strict version is A358583.
The ordered version is A358585, odd-indexed terms A065097.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
A358589 counts square trees, ranked by A358577, ordered A358590.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,0,10}]
  • PARI
    \\ See A358584 for R(n).
    seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[n\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022

Formula

A358581(n) + A358584(n) = A000081(n).
A358582(n) + A358583(n) = A000081(n).
a(n) = Sum_{k=floor(n/2)+1..n} A055277(n, k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 31 2022

A358588 Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Examples

			The a(5) = 1 and a(6) = 8 ordered trees:
  ((o)(o))  ((o)(o)o)
            ((o)(oo))
            ((o)o(o))
            ((oo)(o))
            (o(o)(o))
            (((o))(o))
            (((o)(o)))
            ((o)((o)))
		

Crossrefs

For leaves instead of height we have A000891, unordered A185650 aerated.
The unordered version is A358587, ranked by A358576.
For leaves instead of internal nodes we have A358590, unordered A358589.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358590.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 9*a(n-1) - 32*a(n-2) + 58*a(n-3) - 58*a(n-4) + 32*a(n-5) - 9*a(n-6) + a(n-7) for n > 7.
G.f.: x^5*(-x^2 + x - 1)/((x - 1)^3*(x^2 - 3*x + 1)^2). (End)

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A358584 Number of rooted trees with n nodes, at most half of which are leaves.

Original entry on oeis.org

0, 1, 1, 3, 5, 15, 28, 87, 176, 550, 1179, 3688, 8269, 25804, 59832, 186190, 443407, 1375388, 3346702, 10348509, 25632265, 79020511, 198670299, 610740694, 1555187172, 4768244803, 12276230777, 37546795678, 97601239282, 297831479850, 780790439063, 2377538260547
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(2) = 1 through a(6) = 15 trees:
  (o)  ((o))  ((oo))   (((oo)))   (((ooo)))
              (o(o))   ((o)(o))   ((o)(oo))
              (((o)))  ((o(o)))   ((o(oo)))
                       (o((o)))   ((oo(o)))
                       ((((o))))  (o((oo)))
                                  (o(o)(o))
                                  (o(o(o)))
                                  (oo((o)))
                                  ((((oo))))
                                  (((o)(o)))
                                  (((o(o))))
                                  ((o)((o)))
                                  ((o((o))))
                                  (o(((o))))
                                  (((((o)))))
		

Crossrefs

For equality we have A185650 aerated, ranked by A358578.
The complement is A358581.
The strict case is A358582.
The opposite version is A358583.
A000081 counts rooted trees, ordered A000108.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
A358589 counts square trees, ranked by A358577, ordered A358590.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]<=Count[#,[_],{0,Infinity}]&]],{n,0,10}]
  • PARI
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + O(x*x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..n\2]))} \\ Andrew Howroyd, Dec 30 2022

Formula

A358581(n) + A358584(n) = A000081(n).
A358582(n) + A358583(n) = A000081(n).
a(n) = Sum_{k=1..floor(n/2)} A055277(n, k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 30 2022

A358591 Number of 2n-node rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.

Original entry on oeis.org

0, 0, 2, 17, 94, 464, 2162, 9743, 42962, 186584, 801316, 3412034, 14430740, 60700548, 254180426, 1060361147, 4409342954, 18285098288, 75645143516, 312286595342, 1286827096964, 5293833371408, 21745951533236, 89208948855542, 365523293690804, 1496048600896784
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(3) = 2 and a(4) = 17 trees:
  ((o)(oo))  (((o))(ooo))
  (o(o)(o))  (((o)(ooo)))
             (((oo))(oo))
             (((oo)(oo)))
             ((o)((ooo)))
             ((o)(o(oo)))
             ((o)(oo(o)))
             ((o(o)(oo)))
             ((oo)(o(o)))
             ((oo(o)(o)))
             (o((o))(oo))
             (o((o)(oo)))
             (o(o)((oo)))
             (o(o)(o(o)))
             (o(o(o)(o)))
             (oo((o)(o)))
             (oo(o)((o)))
		

Crossrefs

For leaves = internals we have A185650 aerated, ranked by A358578.
For height = internals we have A358587, ranked by A358576, ordered A358588.
For height = leaves we have A358589, ranked by A358577, ordered A358590.
These trees are ranked by A358592.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,2,15,2}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vecrev(R(2*n, (h,p)->if(h<=n, x^h*polcoef(polcoef(p, 2*h, x), h, y))), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 01 2023
Showing 1-10 of 15 results. Next